Suma de todos los números de Mersenne presentes en una array

Dada una array de enteros arr[] , la tarea es encontrar la suma de todos los números de Mersenne de la array. Un número es un número de Mersenne si es mayor que 0 y es uno menor que alguna potencia de 2. Los primeros números de Mersenne son 1, 3, 7, 15, 31, 63, 127, …

Ejemplos: 

Entrada: arr[] = {17, 6, 7, 63, 3} 
Salida: 73 
Solo 7, 63 y 3 son números de Mersenne, es decir, 7 + 63 + 3 = 73

Entrada: arr[] = {1, 3, 11, 45} 
Salida:
 

Enfoque: Inicialice sum = 0 y comience a recorrer todos los elementos de la array, si el elemento actual es uno menos que alguna potencia de 2 y es mayor que 0, entonces actualice sum = sum + arr[i] . Imprime la suma al final.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function that returns true
// if n is a Mersenne number
int isMersenne(int n)
{
    while (n != 0)
    {
        int r = n % 2;
        if (r == 0)
            return false;
        n /= 2;
    }
    return true;
}
 
// Function to return the sum of all the
// Mersenne numbers from the given array
int sumOfMersenne(int arr[], int n)
{
 
    // To store the required sum
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If current element is a Mersenne number
        if (arr[i] > 0 && isMersenne(arr[i]))
        {
            sum += arr[i];
        }
    }
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 17, 6, 7, 63, 3 };
    int n = sizeof(arr) / sizeof(int);
    cout << (sumOfMersenne(arr, n));
    return 0;
}
 
// This code is contributed by jit_t

Java

// Java implementation of the approach
class GFG {
 
    // Function that returns true
    // if n is a Mersenne number
    static boolean isMersenne(int n)
    {
        while (n != 0) {
            int r = n % 2;
            if (r == 0)
                return false;
            n /= 2;
        }
        return true;
    }
 
    // Function to return the sum of all the
    // Mersenne numbers from the given array
    static int sumOfMersenne(int[] arr, int n)
    {
 
        // To store the required sum
        int sum = 0;
        for (int i = 0; i < n; i++) {
 
            // If current element is a Mersenne number
            if (arr[i] > 0 && isMersenne(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 17, 6, 7, 63, 3 };
        int n = arr.length;
        System.out.print(sumOfMersenne(arr, n));
    }
}

Python3

# Python3 implementation of the approach
 
# Function that returns true
# if n is a Mersenne number
def isMersenne(n) :
    while (n != 0) :
        r = n % 2;
        if (r == 0) :
            return False;
        n //= 2;
         
    return True;
 
# Function to return the sum of all the
# Mersenne numbers from the given array
def sumOfMersenne(arr, n) :
    # To store the required sum
    sum = 0;
    for i in range(n) :
 
        # If current element is a Mersenne number
        if (arr[i] > 0 and isMersenne(arr[i])) :
            sum += arr[i];
     
    return sum;
 
 
# Driver code
if __name__ == "__main__" :
 
    arr = [17, 6, 7, 63, 3 ];
    n = len(arr);
    print(sumOfMersenne(arr, n));
     
# This code is contributed by AnkitRai01

C#

//C# implementation of the approach
using System;
 
class GFG
{
    // Function that returns true
    // if n is a Mersenne number
    static bool isMersenne(int n)
    {
        while (n != 0)
        {
            int r = n % 2;
            if (r == 0)
                return false;
            n /= 2;
        }
        return true;
    }
 
    // Function to return the sum of all the
    // Mersenne numbers from the given array
    static int sumOfMersenne(int[] arr, int n)
    {
 
        // To store the required sum
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If current element is a Mersenne number
            if (arr[i] > 0 && isMersenne(arr[i]))
            {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    static public void Main ()
    {
        int[] arr = { 17, 6, 7, 63, 3 };
        int n = arr.Length;
        Console.WriteLine(sumOfMersenne(arr, n));
    }
}
 
// This code is contributed by jit_t

Javascript

<script>
 
// Javascript implementation of the approach
 
// Function that returns true
// if n is a Mersenne number
function isMersenne( n)
{
    while (n != 0)
    {
        let r = n % 2;
        if (r == 0)
            return false;
             
        n = Math.floor(n / 2);
    }
    return true;
}
 
// Function to return the sum of all the
// Mersenne numbers from the given array
function sumOfMersenne(arr, n)
{
     
    // To store the required sum
    let sum = 0;
    for(let i = 0; i < n; i++)
    {
         
        // If current element is a Mersenne number
        if (arr[i] > 0 && isMersenne(arr[i]))
        {
            sum += arr[i];
        }
    }
    return sum;
}
 
// Driver Code
let arr = [ 17, 6, 7, 63, 3 ];
let n = arr.length;
 
document.write(sumOfMersenne(arr, n));
 
// This code is contributed by jana_sayantan
 
</script>
Producción: 

73

 

Complejidad de tiempo: O (nlogn)

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por facebookruppal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *