Dada una array G[][] de dimensiones N × M , compuesta por números enteros positivos, la tarea es seleccionar X elementos de la array que tengan la suma máxima considerando la condición de que G[i][j] solo se puede seleccionar de la array a menos que se seleccionen todos los elementos G[i][k] , donde 0 ≤ k < j , es decir, el j -ésimo elemento en la actual i -ésima fila puede seleccionarse todos sus elementos precedentes de la actual i -ésima fila ya han sido seleccionados .
Ejemplos:
Entrada: N = 4, M = 4, X = 6, G[][] = {{3, 2, 6, 1}, {1, 9, 2, 4}, {4, 1, 3, 9} , {3, 8, 2, 1}}
Salida: 28
Explicación:
Seleccionar el primer elemento de la primera fila = 3
Seleccionar los dos primeros elementos de la segunda fila = 1 + 9 = 10
Seleccionar el primer elemento de la tercera fila = 4
Seleccionando los primeros dos elementos de la 4ta fila = 3 + 8 = 11
Por lo tanto, los elementos seleccionados son {G[0][0], G[1][0], G[1][1], G[2 ][0], G[3][0], G[3][1]}
Por lo tanto, la suma de los elementos seleccionados es = 3 + 10 + 4 + 11 = 28Entrada: N = 2, M = 4, X = 4, G[][] = {{10, 10, 100, 30}, {80, 50, 10, 50}}
Salida: 200
Enfoque ingenuo: el enfoque más simple para resolver este problema es calcular la suma de todas las M selecciones posibles y encontrar la suma máxima entre ellas.
Complejidad de Tiempo: O(N M )
Espacio Auxiliar: O(1)
Enfoque eficiente: el enfoque anterior se puede optimizar mediante la programación dinámica . Los estados considerables son:
- Número de filas seleccionadas: i .
- Número de elementos seleccionados: j .
Inicialice una array dp[][] tal que dp[i][j] almacene la suma máxima posible que se puede obtener seleccionando j elementos de las primeras i filas.
La transición para dp[][] es la siguiente:
=
donde prefsum[i][x] es la suma de los primeros x elementos en la i -ésima fila de la array.
A continuación se muestra la implementación del enfoque anterior:
C++14
// C++14 program to implement // the above approach #include <bits/stdc++.h> using namespace std; int n, m, X; // Function to calculate the maximum // possible sum by selecting X elements // from the Matrix int maxSum(vector<vector<int>> grid) { // Generate prefix sum of the matrix vector<vector<int>> prefsum(n, vector<int>(m)); for(int i = 0; i < n; i++) { for(int x = 0; x < m; x++) { if (x == 0) prefsum[i][x] = grid[i][x]; else prefsum[i][x] = prefsum[i][x - 1] + grid[i][x]; } } vector<vector<int>> dp(n, vector<int>(X + 1, INT_MIN)); // Maximum possible sum by selecting // 0 elements from the first i rows for(int i = 0; i < n; i++) dp[i][0] = 0; // If a single row is present for(int i = 1; i <= min(m, X); ++i) { dp[0][i] = dp[0][i - 1] + grid[0][i - 1]; } for(int i = 1; i < n; ++i) { for(int j = 1; j <= X; ++j) { // If elements from the // current row is not selected dp[i][j] = dp[i - 1][j]; // Iterate over all possible // selections from current row for(int x = 1; x <= min(j, m); x++) { dp[i][j] = max(dp[i][j], dp[i - 1][j - x] + prefsum[i][x - 1]); } } } // Return maximum possible sum return dp[n - 1][X]; } // Driver code int main() { n = 4; m = 4; X = 6; vector<vector<int>> grid = { { 3, 2, 6, 1 }, { 1, 9, 2, 4 }, { 4, 1, 3, 9 }, { 3, 8, 2, 1 } }; int ans = maxSum(grid); cout << (ans); return 0; } // This code is contributed by mohit kumar 29
Java
// Java program to implement // the above approach import java.util.*; import java.io.*; class GFG { static int n, m, X; // Function to calculate the maximum // possible sum by selecting X elements // from the Matrix public static int maxSum(int[][] grid) { // Generate prefix sum of the matrix int prefsum[][] = new int[n][m]; for (int i = 0; i < n; i++) { for (int x = 0; x < m; x++) { if (x == 0) prefsum[i][x] = grid[i][x]; else prefsum[i][x] = prefsum[i][x - 1] + grid[i][x]; } } int dp[][] = new int[n][X + 1]; // Initialize dp[][] for (int dpp[] : dp) Arrays.fill(dpp, Integer.MIN_VALUE); // Maximum possible sum by selecting // 0 elements from the first i rows for (int i = 0; i < n; i++) dp[i][0] = 0; // If a single row is present for (int i = 1; i <= Math.min(m, X); ++i) { dp[0][i] = dp[0][i - 1] + grid[0][i - 1]; } for (int i = 1; i < n; ++i) { for (int j = 1; j <= X; ++j) { // If elements from the // current row is not selected dp[i][j] = dp[i - 1][j]; // Iterate over all possible // selections from current row for (int x = 1; x <= Math.min(j, m); x++) { dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - x] + prefsum[i][x - 1]); } } } // Return maximum possible sum return dp[n - 1][X]; } // Driver Code public static void main(String[] args) { n = 4; m = 4; X = 6; int grid[][] = { { 3, 2, 6, 1 }, { 1, 9, 2, 4 }, { 4, 1, 3, 9 }, { 3, 8, 2, 1 } }; int ans = maxSum(grid); System.out.println(ans); } }
Python3
# Python3 program to implement # the above approach import sys # Function to calculate the maximum # possible sum by selecting X elements # from the Matrix def maxSum(grid): # Generate prefix sum of the matrix prefsum = [[0 for x in range(m)] for y in range(m)] for i in range(n): for x in range(m): if (x == 0): prefsum[i][x] = grid[i][x] else: prefsum[i][x] = (prefsum[i][x - 1] + grid[i][x]) dp = [[-sys.maxsize - 1 for x in range(X + 1)] for y in range(n)] # Maximum possible sum by selecting # 0 elements from the first i rows for i in range(n): dp[i][0] = 0 # If a single row is present for i in range(1, min(m, X)): dp[0][i] = (dp[0][i - 1] + grid[0][i - 1]) for i in range(1, n): for j in range(1, X + 1): # If elements from the # current row is not selected dp[i][j] = dp[i - 1][j] # Iterate over all possible # selections from current row for x in range(1, min(j, m) + 1): dp[i][j] = max(dp[i][j], dp[i - 1][j - x] + prefsum[i][x - 1]) # Return maximum possible sum return dp[n - 1][X] # Driver Code if __name__ == "__main__": n = 4 m = 4 X = 6 grid = [ [ 3, 2, 6, 1 ], [ 1, 9, 2, 4 ], [ 4, 1, 3, 9 ], [ 3, 8, 2, 1 ] ] ans = maxSum(grid) print(ans) # This code is contributed by chitranayal
C#
// C# program to implement // the above approach using System; class GFG{ static int n, m, X; // Function to calculate the maximum // possible sum by selecting X elements // from the Matrix public static int maxSum(int[,] grid) { // Generate prefix sum of the matrix int [,]prefsum = new int[n, m]; for(int i = 0; i < n; i++) { for(int x = 0; x < m; x++) { if (x == 0) prefsum[i, x] = grid[i, x]; else prefsum[i, x] = prefsum[i, x - 1] + grid[i, x]; } } int [,]dp = new int[n, X + 1]; // Initialize [,]dp for(int i = 1; i < n; i++) for(int j = 1; j <= X; ++j) dp[i, j] = int.MinValue; // Maximum possible sum by selecting // 0 elements from the first i rows for(int i = 0; i < n; i++) dp[i, 0] = 0; // If a single row is present for(int i = 1; i <= Math.Min(m, X); ++i) { dp[0, i] = dp[0, i - 1] + grid[0, i - 1]; } for(int i = 1; i < n; ++i) { for(int j = 1; j <= X; ++j) { // If elements from the // current row is not selected dp[i, j] = dp[i - 1, j]; // Iterate over all possible // selections from current row for(int x = 1; x <= Math.Min(j, m); x++) { dp[i, j] = Math.Max(dp[i, j], dp[i - 1, j - x] + prefsum[i, x - 1]); } } } // Return maximum possible sum return dp[n - 1, X]; } // Driver Code public static void Main(String[] args) { n = 4; m = 4; X = 6; int [,]grid = { { 3, 2, 6, 1 }, { 1, 9, 2, 4 }, { 4, 1, 3, 9 }, { 3, 8, 2, 1 } }; int ans = maxSum(grid); Console.WriteLine(ans); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript program for the above approach let n, m, X; // Function to calculate the maximum // possible sum by selecting X elements // from the Matrix function maxSum(grid) { // Generate prefix sum of the matrix let prefsum = new Array(n); // Loop to create 2D array using 1D array for (var i = 0; i < prefsum.length; i++) { prefsum[i] = new Array(2); } for (let i = 0; i < n; i++) { for (let x = 0; x < m; x++) { if (x == 0) prefsum[i][x] = grid[i][x]; else prefsum[i][x] = prefsum[i][x - 1] + grid[i][x]; } } let dp = new Array(n); // Loop to create 2D array using 1D array for (var i = 0; i < dp.length; i++) { dp[i] = new Array(2); } for (var i = 0; i < n; i++) { for (var j = 0; j < X+1; j++) { dp[i][j] = 0; } } // Maximum possible sum by selecting // 0 elements from the first i rows for (let i = 0; i < n; i++) dp[i][0] = 0; // If a single row is present for (let i = 1; i <= Math.min(m, X); ++i) { dp[0][i] = dp[0][i - 1] + grid[0][i - 1]; } for (let i = 1; i < n; ++i) { for (let j = 1; j <= X; ++j) { // If elements from the // current row is not selected dp[i][j] = dp[i - 1][j]; // Iterate over all possible // selections from current row for (let x = 1; x <= Math.min(j, m); x++) { dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - x] + prefsum[i][x - 1]); } } } // Return maximum possible sum return dp[n - 1][X]; } // Driver Code n = 4; m = 4; X = 6; let grid = [[ 3, 2, 6, 1 ], [ 1, 9, 2, 4 ], [ 4, 1, 3, 9 ], [ 3, 8, 2, 1 ]]; let ans = maxSum(grid); document.write(ans); </script>
28
Complejidad temporal: O(N*M*X)
Espacio auxiliar: O(N*M)