Subsecuencia de suma máxima – Part 7

Dada una array arr[] de tamaño N , la tarea es encontrar la suma máxima de subsecuencias no vacías presentes en la array dada.

Ejemplos:

Entrada: arr[] = { 2, 3, 7, 1, 9 } 
Salida: 22 
Explicación: 
Suma de la subsecuencia { arr[0], arr[1], arr[2], arr[3], arr[4 ] } es igual a 22, que es la suma máxima posible de cualquier subsecuencia de la array. 
Por lo tanto, la salida requerida es 22.

Entrada: arr[] = { -2, 11, -4, 2, -3, -10 } 
Salida: 13 
Explicación: 
La suma de la subsecuencia { arr[1], arr[3] } es igual a 13, que es la suma máxima posible de cualquier subsecuencia de la array. 
Por lo tanto, la salida requerida es 13.

Enfoque ingenuo: el enfoque más simple para resolver este problema es generar todas las posibles subsecuencias no vacías de la array y calcular la suma de cada subsecuencia de la array. Finalmente, imprima la suma máxima obtenida de la subsucesión.

 Complejidad de Tiempo: O(N * 2 N )  
Espacio Auxiliar: O(N)

Enfoque Eficiente: La idea es recorrer el arreglo y calcular la suma de los elementos positivos del arreglo e imprimir la suma obtenida. Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the maximum
// non-empty subsequence sum
int MaxNonEmpSubSeq(int a[], int n)
{
    // Stores the maximum non-empty
    // subsequence sum in an array
    int sum = 0;
 
    // Stores the largest element
    // in the array
    int max = *max_element(a, a + n);
 
    if (max <= 0) {
 
        return max;
    }
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If a[i] is greater than 0
        if (a[i] > 0) {
 
            // Update sum
            sum += a[i];
        }
    }
    return sum;
}
 
// Driver Code
int main()
{
    int arr[] = { -2, 11, -4, 2, -3, -10 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << MaxNonEmpSubSeq(arr, N);
 
    return 0;
}

Java

// Java program to implement
// the above approach
import java.util.*;
class GFG
{
 
  // Function to print the maximum
  // non-empty subsequence sum
  static int MaxNonEmpSubSeq(int a[], int n)
  {
 
    // Stores the maximum non-empty
    // subsequence sum in an array
    int sum = 0;
 
    // Stores the largest element
    // in the array
    int max = a[0];
    for(int i = 1; i < n; i++)
    {
      if(max < a[i])
      {
        max = a[i];
      }
    }
 
    if (max <= 0)
    {    
      return max;
    }
 
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
 
      // If a[i] is greater than 0
      if (a[i] > 0)
      {
 
        // Update sum
        sum += a[i];
      }
    }
    return sum;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int arr[] = { -2, 11, -4, 2, -3, -10 };
    int N = arr.length;
 
    System.out.println(MaxNonEmpSubSeq(arr, N));
  }
}
 
// This code is contributed by divyesh072019

Python3

# Python3 program to implement
# the above approach
 
# Function to print the maximum
# non-empty subsequence sum
def MaxNonEmpSubSeq(a, n):
     
    # Stores the maximum non-empty
    # subsequence sum in an array
    sum = 0
 
    # Stores the largest element
    # in the array
    maxm = max(a)
 
    if (maxm <= 0):
        return maxm
 
    # Traverse the array
    for i in range(n):
         
        # If a[i] is greater than 0
        if (a[i] > 0):
             
            # Update sum
            sum += a[i]
             
    return sum
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ -2, 11, -4, 2, -3, -10 ]
    N = len(arr)
 
    print(MaxNonEmpSubSeq(arr, N))
 
# This code is contributed by mohit kumar 29

C#

// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to print the maximum
// non-empty subsequence sum
static int MaxNonEmpSubSeq(int[] a, int n)
{
     
    // Stores the maximum non-empty
    // subsequence sum in an array
    int sum = 0;
     
    // Stores the largest element
    // in the array
    int max = a[0];
    for(int i = 1; i < n; i++)
    {
        if (max < a[i])
        {
            max = a[i];
        }
    }
     
    if (max <= 0)
    {
        return max;
    }
     
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // If a[i] is greater than 0
        if (a[i] > 0)
        {
             
            // Update sum
            sum += a[i];
        }
    }
    return sum;
}
 
// Driver Code
static void Main()
{
    int[] arr = { -2, 11, -4, 2, -3, -10 };
    int N = arr.Length;
     
    Console.WriteLine(MaxNonEmpSubSeq(arr, N));
}
}
 
// This code is contributed by divyeshrabadiya07

Javascript

<script>
 
    // Javascript program to implement
    // the above approach
     
    // Function to print the maximum
    // non-empty subsequence sum
    function MaxNonEmpSubSeq(a, n)
    {
 
        // Stores the maximum non-empty
        // subsequence sum in an array
        let sum = 0;
 
        // Stores the largest element
        // in the array
        let max = a[0];
        for(let i = 1; i < n; i++)
        {
            if (max < a[i])
            {
                max = a[i];
            }
        }
 
        if (max <= 0)
        {
            return max;
        }
 
        // Traverse the array
        for(let i = 0; i < n; i++)
        {
 
            // If a[i] is greater than 0
            if (a[i] > 0)
            {
 
                // Update sum
                sum += a[i];
            }
        }
        return sum;
    }
     
    let arr = [ -2, 11, -4, 2, -3, -10 ];
    let N = arr.length;
      
    document.write(MaxNonEmpSubSeq(arr, N));
   
</script>
Producción: 

13

 

Complejidad temporal: O(N)  
Espacio auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por CoderSaty y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *