Dado un arreglo arr , la tarea es encontrar la suma mínima de los elementos del arreglo después de aplicar la siguiente operación:
Para cualquier par del arreglo, si a[i] > a[j] entonces a[i] = a[ yo] – a[j] .
Ejemplos:
Entrada: arr[] = {1, 2, 3}
Salida: 3
array modificada será {1, 1, 1}Entrada: a = {2, 4, 6}
Salida: 6
array modificada será {2, 2, 2}
Planteamiento: Observe aquí que después de cada operación, el MCD de todos los elementos seguirá siendo el mismo. Entonces, al final, cada elemento será igual al mcd de todos los elementos de la array después de aplicar la operación dada.
Entonces, la respuesta final será (n * mcd) .
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to Find the minimum sum // of given array after applying given operation. #include <bits/stdc++.h> using namespace std; // Function to Find the minimum sum // of given array after applying given operation. int MinSum(int a[], int n) { // to store final gcd value int gcd = a[0]; // get gcd of the whole array for (int i = 1; i < n; i++) gcd = __gcd(a[i], gcd); return n * gcd; } // Driver code int main() { int a[] = { 20, 14, 6, 8, 15 }; int n = sizeof(a) / sizeof(a[0]); // function call cout << MinSum(a, n); return 0; }
Java
// Java program to Find the minimum sum // of given array after applying given operation. import java.io.*; class GFG { // Recursive function to return gcd of a and b static int __gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // Function to Find the minimum sum // of given array after applying given operation. static int MinSum(int []a, int n) { // to store final gcd value int gcd = a[0]; // get gcd of the whole array for (int i = 1; i < n; i++) gcd = __gcd(a[i], gcd); return n * gcd; } // Driver code public static void main (String[] args) { int a[] = { 20, 14, 6, 8, 15 }; int n = a.length; // function call System.out.println(MinSum(a, n)); } } // This code is contributed by anuj_67..
Python3
# Python3 program to Find the minimum # sum of given array after applying # given operation. import math # Function to Find the minimum sum # of given array after applying # given operation. def MinSum(a, n): # to store final gcd value gcd = a[0] # get gcd of the whole array for i in range(1, n): gcd = math.gcd(a[i], gcd) return n * gcd # Driver code if __name__ == "__main__": a = [20, 14, 6, 8, 15 ] n = len(a) # function call print(MinSum(a, n)) # This code is contributed by ita_c
C#
// C# program to Find the minimum sum // of given array after applying given operation. using System; class GFG { // Recursive function to return gcd of a and b static int __gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // Function to Find the minimum sum // of given array after applying given operation. static int MinSum(int []a, int n) { // to store final gcd value int gcd = a[0]; // get gcd of the whole array for (int i = 1; i < n; i++) gcd = __gcd(a[i], gcd); return n * gcd; } // Driver Program to test above function static void Main() { int []a = { 20, 14, 6, 8, 15 }; int n = a.Length; Console.WriteLine(MinSum(a, n)); } // This code is contributed by Ryuga. }
PHP
<?php // PHP program to Find the minimum sum of // given array after applying given operation. // Function to Find the minimum sum // of given array after applying // given operation. function gcd($a, $b) { if ($b == 0) return $a; return gcd($b, $a % $b); } function MinSum($a, $n) { // to store final gcd value $gcdd = $a[0]; // get gcd of the whole array for ($i = 1; $i < $n; $i++) $gcdd = gcd($a[$i], $gcdd); return $n * $gcdd; } // Driver code $a = array( 20, 14, 6, 8, 15 ); $n = count($a); // function call echo MinSum($a, $n); // This code is contributed by mits ?>
Javascript
<script> // Javascript program to Find the minimum sum // of given array after applying given operation. // Recursive function to return gcd of a and b function __gcd(a, b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); } // Function to Find the minimum sum // of given array after applying // given operation. function MinSum(a, n) { // To store final gcd value var gcd = a[0]; // Get gcd of the whole array for(var i = 1; i < n; i++) gcd = __gcd(a[i], gcd); return n * gcd; } // Driver code var a = [ 20, 14, 6, 8, 15 ]; var n = a.length; // Function call document.write( MinSum(a, n)); // This code is contributed by noob2000 </script>
5
Complejidad de tiempo: O(n * log(min(a, b))), donde a y b son dos parámetros del gcd.
Espacio auxiliar: O(log(min(a, b)))
Publicación traducida automáticamente
Artículo escrito por rupesh_rao y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA