Dado un número n, imprima todos los números primos menores o iguales que n. También se da que n es un número pequeño.
Ejemplo:
C++
// C++ program to print all primes smaller than or equal to // n using Sieve of Eratosthenes #include <bits/stdc++.h> using namespace std; void SieveOfEratosthenes(int n) { // Create a boolean array "prime[0..n]" and initialize // all entries it as true. A value in prime[i] will // finally be false if i is Not a prime, else true. bool prime[n + 1]; memset(prime, true, sizeof(prime)); for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p greater than or // equal to the square of it numbers which are // multiple of p and are less than p^2 are // already been marked. for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int p = 2; p <= n; p++) if (prime[p]) cout << p << " "; } // Driver Code int main() { int n = 30; cout << "Following are the prime numbers smaller " << " than or equal to " << n << endl; SieveOfEratosthenes(n); return 0; }
C
// C program to print all primes smaller than or equal to // n using Sieve of Eratosthenes #include <stdio.h> #include <stdbool.h> #include <string.h> void SieveOfEratosthenes(int n) { // Create a boolean array "prime[0..n]" and initialize // all entries it as true. A value in prime[i] will // finally be false if i is Not a prime, else true. bool prime[n + 1]; memset(prime, true, sizeof(prime)); for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p greater than or // equal to the square of it numbers which are // multiple of p and are less than p^2 are // already been marked. for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int p = 2; p <= n; p++) if (prime[p]) printf("%d ",p); } // Driver Code int main() { int n = 30; printf("Following are the prime numbers smaller than or equal to %d \n", n); SieveOfEratosthenes(n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java program to print all primes smaller than or equal to // n using Sieve of Eratosthenes class SieveOfEratosthenes { void sieveOfEratosthenes(int n) { // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value in // prime[i] will finally be false if i is Not a // prime, else true. boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p greater than or // equal to the square of it numbers which // are multiple of p and are less than p^2 // are already been marked. for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int i = 2; i <= n; i++) { if (prime[i] == true) System.out.print(i + " "); } } // Driver Code public static void main(String args[]) { int n = 30; System.out.print("Following are the prime numbers "); System.out.println("smaller than or equal to " + n); SieveOfEratosthenes g = new SieveOfEratosthenes(); g.sieveOfEratosthenes(n); } } // This code is contributed by Aditya Kumar (adityakumar129)
Python3
# Python program to print all # primes smaller than or equal to # n using Sieve of Eratosthenes def SieveOfEratosthenes(n): # Create a boolean array # "prime[0..n]" and initialize # all entries it as true. # A value in prime[i] will # finally be false if i is # Not a prime, else true. prime = [True for i in range(n+1)] p = 2 while (p * p <= n): # If prime[p] is not # changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * p, n+1, p): prime[i] = False p += 1 # Print all prime numbers for p in range(2, n+1): if prime[p]: print(p) # Driver code if __name__ == '__main__': n = 20 print("Following are the prime numbers smaller"), print("than or equal to", n) SieveOfEratosthenes(n)
C#
// C# program to print all primes // smaller than or equal to n // using Sieve of Eratosthenes using System; namespace prime { public class GFG { public static void SieveOfEratosthenes(int n) { // Create a boolean array // "prime[0..n]" and // initialize all entries // it as true. A value in // prime[i] will finally be // false if i is Not a // prime, else true. bool[] prime = new bool[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int i = 2; i <= n; i++) { if (prime[i] == true) Console.Write(i + " "); } } // Driver Code public static void Main() { int n = 30; Console.WriteLine( "Following are the prime numbers"); Console.WriteLine("smaller than or equal to " + n); SieveOfEratosthenes(n); } } } // This code is contributed by Sam007.
PHP
<?php // php program to print all primes smaller // than or equal to n using Sieve of // Eratosthenes function SieveOfEratosthenes($n) { // Create a boolean array "prime[0..n]" // and initialize all entries it as true. // A value in prime[i] will finally be // false if i is Not a prime, else true. $prime = array_fill(0, $n+1, true); for ($p = 2; $p*$p <= $n; $p++) { // If prime[p] is not changed, // then it is a prime if ($prime[$p] == true) { // Update all multiples of p for ($i = $p*$p; $i <= $n; $i += $p) $prime[$i] = false; } } // Print all prime numbers for ($p = 2; $p <= $n; $p++) if ($prime[$p]) echo $p." "; } // Driver Code $n = 30; echo "Following are the prime numbers " ."smaller than or equal to " .$n."\n" ; SieveOfEratosthenes($n); // This code is contributed by mits ?>
Javascript
<script> // javascript program to print all // primes smaller than or equal to // n using Sieve of Eratosthenes function sieveOfEratosthenes(n) { // Create a boolean array // "prime[0..n]" and // initialize all entries // it as true. A value in // prime[i] will finally be // false if i is Not a // prime, else true. prime = Array.from({length: n+1}, (_, i) => true); for (p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (i = 2; i <= n; i++) { if (prime[i] == true) document.write(i + " "); } } // Driver Code var n = 30; document.write( "Following are the prime numbers "); document.write("smaller than or equal to " + n+"<br>"); sieveOfEratosthenes(n); // This code is contributed by 29AjayKumar </script>
C++
// the following implementation // stores only halves of odd numbers // the algorithm is a faster by some constant factors #include <bitset> #include <iostream> using namespace std; bitset<500001> Primes; void SieveOfEratosthenes(int n) { Primes[0] = 1; for (int i = 3; i*i <= n; i += 2) { if (Primes[i / 2] == 0) { for (int j = 3 * i; j <= n; j += 2 * i) Primes[j / 2] = 1; } } } int main() { int n = 100; SieveOfEratosthenes(n); for (int i = 1; i <= n; i++) { if (i == 2) cout << i << ' '; else if (i % 2 == 1 && Primes[i / 2] == 0) cout << i << ' '; } return 0; }
Java
// Java program for the above approach import java.io.*; public class GFG { static int[] Primes = new int[500001]; static void SieveOfEratosthenes(int n) { Primes[0] = 1; for (int i = 3; i * i <= n; i += 2) { if (Primes[i / 2] == 0) { for (int j = 3 * i; j <= n; j += 2 * i) Primes[j / 2] = 1; } } } // Driver Code public static void main(String[] args) { int n = 100; SieveOfEratosthenes(n); for (int i = 1; i <= n; i++) { if (i == 2) System.out.print(i + " "); else if (i % 2 == 1 && Primes[i / 2] == 0) System.out.print(i + " "); } } } // This code is contributed by ukasp.
Python3
# Python program for the above approach Primes = [0] * 500001 def SieveOfEratosthenes(n) : Primes[0] = 1 i = 3 while(i*i <= n) : if (Primes[i // 2] == 0) : for j in range(3 * i, n+1, 2 * i) : Primes[j // 2] = 1 i += 2 # Driver Code if __name__ == "__main__": n = 100 SieveOfEratosthenes(n) for i in range(1, n+1) : if (i == 2) : print( i, end = " ") elif (i % 2 == 1 and Primes[i // 2] == 0) : print( i, end = " ") # This code is contributed by code_hunt.
C#
// C# program for the above approach using System; public class GFG { static int[] Primes = new int[500001]; static void SieveOfEratosthenes(int n) { Primes[0] = 1; for (int i = 3; i*i <= n; i += 2) { if (Primes[i / 2] == 0) { for (int j = 3 * i; j <= n; j += 2 * i) Primes[j / 2] = 1; } } } // Driver Code public static void Main(String[] args) { int n = 100; SieveOfEratosthenes(n); for (int i = 1; i <= n; i++) { if (i == 2) Console.Write(i + " "); else if (i % 2 == 1 && Primes[i / 2] == 0) Console.Write(i + " "); } } } // This code is contributed by sanjoy_62.
Javascript
// A JavaScript Program // the following implementation // stores only halves of odd numbers // the algorithm is a faster by some constant factors let Primes = new Array(500001).fill(0); function SieveOfEratosthenes(n) { Primes[0] = 1; for (let i = 3; i*i <= n; i += 2) { if (Primes[Math.floor(i / 2)] == 0) { for (let j = 3 * i; j <= n; j += 2 * i){ Primes[Math.floor(j / 2)] = 1; } } } } let n = 100; SieveOfEratosthenes(n); let res = ""; for (let i = 1; i <= n; i++) { if (i == 2){ res = res + i + " "; } else if (i % 2 == 1 && Primes[Math.floor(i / 2)] == 0){ res = res + i + " "; } } console.log(res); // The code is contributed by Gautam goel (gautamgoel962)
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA