Valor mínimo a asignar a los elementos para que la suma sea mayor que la suma inicial

Dada una array arr[] de N elementos, la tarea es actualizar todos los elementos de la array dada a algún valor X tal que la suma de todos los elementos actualizados de la array sea estrictamente mayor que la suma de todos los elementos de la array inicial y X es el mínimo posible.
Ejemplos: 
 

Entrada: arr[] = {4, 2, 1, 10, 6} 
Salida:
Suma del arreglo original = 4 + 2 + 1 + 10 + 6 = 23 
Suma del arreglo modificado = 5 + 5 + 5 + 5 + 5 = 25
Entrada: arr[] = {9876, 8654, 5470, 3567, 7954} 
Salida: 7105 
 

Acercarse: 
 

  • Encuentre la suma de los elementos de la array original y guárdela en una variable sumArr
  • Calcule X = sumArr / n donde n es el número de elementos en la array.
  • Ahora, para exceder la suma de la array original, cada elemento de la nueva array debe ser al menos X + 1 .

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// required value
int findMinValue(int arr[], int n)
{
 
    // Find the sum of the
    // array elements
    long sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // Return the required value
    return ((sum / n) + 1);
}
 
// Driver code
int main()
{
    int arr[] = { 4, 2, 1, 10, 6 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMinValue(arr, n);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG {
 
    // Function to return the minimum
    // required value
    static int findMinValue(int arr[], int n)
    {
 
        // Find the sum of the
        // array elements
        long sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
 
        // Return the required value
        return ((int)(sum / n) + 1);
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 4, 2, 1, 10, 6 };
        int n = arr.length;
 
        System.out.print(findMinValue(arr, n));
    }
}

Python3

# Python3 implementation of the approach
 
# Function to return the minimum
# required value
def findMinValue(arr, n):
     
    # Find the sum of the
    # array elements
    sum = 0
    for i in range(n):
        sum += arr[i]
         
    # Return the required value
    return (sum // n) + 1
     
# Driver code
arr = [4, 2, 1, 10, 6]
n = len(arr)
print(findMinValue(arr, n))

C#

// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the minimum
    // required value
    static int findMinValue(int []arr, int n)
    {
 
        // Find the sum of the
        // array elements
        long sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
 
        // Return the required value
        return ((int)(sum / n) + 1);
    }
 
    // Driver code
    static public void Main ()
    {
        int []arr = { 4, 2, 1, 10, 6 };
        int n = arr.Length;
 
        Console.WriteLine(findMinValue(arr, n));
    }
}       
         
// This code is contributed by AnkitRai01

Javascript

<script>
// Javascript implementation of the approach
 
// Function to return the minimum
// required value
function findMinValue(arr, n)
{
 
    // Find the sum of the
    // array elements
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum += arr[i];
 
    // Return the required value
    return (parseInt(sum / n) + 1);
}
 
// Driver code
    let arr = [ 4, 2, 1, 10, 6 ];
    let n = arr.length;
 
    document.write(findMinValue(arr, n));
 
</script>
Producción: 

5

 

Complejidad temporal : O(N). 
Espacio Auxiliar : O(1).  

Publicación traducida automáticamente

Artículo escrito por Apoorva_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *