Dada una array binaria mat[][] de dimensiones N * N , la tarea es verificar si Bitwise AND de los números decimales obtenidos al concatenar los elementos de las diagonales primarias y secundarias es mayor que Bitwise AND de los números decimales obtenidos por los elementos presentes en la fila y columna del medio. Si se encuentra que es cierto, escriba «Sí» . De lo contrario, escriba “No” .
Nota: concatene los elementos de la array de izquierda a derecha y de arriba a abajo solamente. Si N es par, entonces saque la primera fila/columna del medio de las dos.
Ejemplos:
Entrada: M[][] = {{1, 0, 1}, {0, 0, 1}, {0, 1, 1}}
Salida: No
Explicación:
El número formado al concatenar elementos diagonales principales es “101” .
El número formado por la concatenación de elementos diagonales cruzados es “001”.
El número formado por la concatenación de elementos en la fila central es «001».
El número formado por la concatenación de elementos en la columna central es “001”.
Por lo tanto, el AND bit a bit de “101” y “001” es el mismo que el AND bit a bit de “001” y “001”.Entrada: M[][] = {{0, 1, 1}, {0, 0, 0}, {0, 1, 1}}
Salida: Sí
Enfoque ingenuo: el enfoque más simple para resolver el problema es atravesar la array dada y agregar el número correspondiente a una variable, digamos P, si la fila actual es igual a la columna actual, a una variable, digamos S, si la fila es N-columna , a una variable, digamos MR, si la fila es igual a N/2 , y a una variable, digamos MC, si la columna es N/2 . Después de completar los pasos anteriores, si Bitwise AND de P y S es mayor que Bitwise AND de MR y MC , escriba “Sí” . De lo contrario, imprima«No».
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to convert obtained binary // representation to decimal value int convert(vector<int> p) { // Stores the resultant number int ans = 0; // Traverse string arr for(int i : p) { ans = (ans << 1) | i; } // Return the number formed return ans; } // Function to count the number of // set bits in the number num int count(int num) { // Stores the count of set bits int ans = 0; // Iterate until num > 0 while (num > 0) { ans += num & 1; num >>= 1; } return ans; } // Function to check if the given matrix // satisfies the given condition or not void checkGoodMatrix(vector<vector<int> > mat) { vector<int> P; vector<int> S; vector<int> MR; vector<int> MC; // To get P, S, MR, and MC for(int i = 0; i < mat.size(); i++) { for(int j = 0; j < mat[0].size(); j++) { if (i == j) P.push_back(mat[i][j]); if (i + j == mat.size() - 1) S.push_back(mat[i][j]); if (i == floor((mat.size() - 1) / 2)) MR.push_back(mat[i][j]); if (j == floor((mat.size() - 1) / 2)) MC.push_back(mat[i][j]); } } reverse(S.begin(), S.end()); // Stores decimal equivalents // of binary representations int P0 = convert(P); int S0 = convert(S); int MR0 = convert(MR); int MC0 = convert(MC); // Gett the number of set bits int setBitsPS = count((P0 & S0)); int setBitsMM = count((MR0 & MC0)); // Print the answer if (setBitsPS > setBitsMM) cout << "Yes"; else cout << "No"; } // Driver code int main() { vector<vector<int>> mat = { { 1, 0, 1 }, { 0, 0, 1 }, { 0, 1, 1 } }; checkGoodMatrix(mat); } // This code is contributed by nirajgusain5
Java
// Java program for the above approach import java.util.ArrayList; import java.util.Collections; class GFG{ // Function to convert obtained binary // representation to decimal value static int convert(ArrayList<Integer> p) { // Stores the resultant number int ans = 0; // Traverse string arr for(int i: p) { ans = (ans << 1) | i; } // Return the number formed return ans; } // Function to count the number of // set bits in the number num static int count(int num) { // Stores the count of set bits int ans = 0; // Iterate until num > 0 while (num > 0) { ans += num & 1; num >>= 1; } return ans; } // Function to check if the given matrix // satisfies the given condition or not static void checkGoodMatrix(int mat[][]) { ArrayList<Integer> P = new ArrayList<Integer>(); ArrayList<Integer> S = new ArrayList<Integer>(); ArrayList<Integer> MR = new ArrayList<Integer>(); ArrayList<Integer> MC = new ArrayList<Integer>(); // To get P, S, MR, and MC for(int i = 0; i < mat.length; i++) { for(int j = 0; j < mat[0].length; j++) { if (i == j) P.add(mat[i][j]); if (i + j == mat.length - 1) S.add(mat[i][j]); if (i == Math.floor((mat.length - 1) / 2)) MR.add(mat[i][j]); if (j == Math.floor((mat.length - 1) / 2)) MC.add(mat[i][j]); } } Collections.reverse(S); // Stores decimal equivalents // of binary representations int P0 = convert(P); int S0 = convert(S); int MR0 = convert(MR); int MC0 = convert(MC); // Gett the number of set bits int setBitsPS = count((P0 & S0)); int setBitsMM = count((MR0 & MC0)); // Print the answer if (setBitsPS > setBitsMM) System.out.print("Yes"); else System.out.print("No"); } // Driver code public static void main(String[] args) { int mat[][] = { { 1, 0, 1 }, { 0, 0, 1 }, { 0, 1, 1 } }; checkGoodMatrix(mat); } } // This code is contributed by abhinavjain194
Python3
# Python3 program for the above approach # Functio to convert obtained binary # representation to decimal value def convert(arr): # Stores the resultant number ans = 0 # Traverse string arr for i in arr: ans = (ans << 1) | i # Return the number formed return ans # Function to count the number of # set bits in the number num def count(num): # Stores the count of set bits ans = 0 # Iterate until num > 0 while num: ans += num & 1 num >>= 1 return ans # Function to check if the given matrix # satisfies the given condition or not def checkGoodMatrix(mat): P = [] S = [] MR = [] MC = [] # To get P, S, MR, and MC for i in range(len(mat)): for j in range(len(mat[0])): if i == j: P.append(mat[i][j]) if i + j == len(mat)-1: S.append(mat[i][j]) if i == (len(mat)-1)//2: MR.append(mat[i][j]) if j == (len(mat)-1)//2: MC.append(mat[i][j]) S.reverse() # Stores decimal equivalents # of binary representations P = convert(P) S = convert(S) MR = convert(MR) MC = convert(MC) # Gett the number of set bits setBitsPS = count(P & S) setBitsMM = count(MR & MC) # Print the answer if setBitsPS > setBitsMM: print("Yes") else: print("No") # Driver Code # Given Matrix mat = [[1, 0, 1], [0, 0, 1], [0, 1, 1]] checkGoodMatrix(mat)
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to convert obtained binary // representation to decimal value static int convert(List<int> p) { // Stores the resultant number int ans = 0; // Traverse string arr foreach(int i in p) { ans = (ans << 1) | i; } // Return the number formed return ans; } // Function to count the number of // set bits in the number num static int count(int num) { // Stores the count of set bits int ans = 0; // Iterate until num > 0 while (num > 0) { ans += num & 1; num >>= 1; } return ans; } // Function to check if the given matrix // satisfies the given condition or not static void checkGoodMatrix(int[, ] mat) { List<int> P = new List<int>(); List<int> S = new List<int>(); List<int> MR = new List<int>(); List<int> MC = new List<int>(); // To get P, S, MR, and MC for(int i = 0; i < mat.GetLength(0); i++) { for(int j = 0; j < mat.GetLength(1); j++) { if (i == j) P.Add(mat[i, j]); if (i + j == mat.GetLength(0) - 1) S.Add(mat[i, j]); if (i == Math.Floor( (mat.GetLength(0) - 1) / 2.0)) MR.Add(mat[i, j]); if (j == Math.Floor( (mat.GetLength(0) - 1) / 2.0)) MC.Add(mat[i, j]); } } S.Reverse(); // Stores decimal equivalents // of binary representations int P0 = convert(P); int S0 = convert(S); int MR0 = convert(MR); int MC0 = convert(MC); // Gett the number of set bits int setBitsPS = count((P0 & S0)); int setBitsMM = count((MR0 & MC0)); // Print the answer if (setBitsPS > setBitsMM) Console.Write("Yes"); else Console.Write("No"); } // Driver code public static void Main(string[] args) { int[,] mat = { { 1, 0, 1 }, { 0, 0, 1 }, { 0, 1, 1 } }; checkGoodMatrix(mat); } } // This code is contributed by ukasp
Javascript
<script> // Javascript program for above approach // Function to convert obtained binary // representation to decimal value function convert(p) { // Stores the resultant number let ans = 0; // Traverse string arr for (let i of p) { ans = (ans << 1) | i; } // Return the number formed return ans; } // Function to count the number of // set bits in the number num function count(num) { // Stores the count of set bits let ans = 0; // Iterate until num > 0 while (num > 0) { ans += num & 1; num >>= 1; } return ans; } // Function to check if the given matrix // satisfies the given condition or not function checkGoodMatrix(mat) { let P = [], S = [], MR = [], MC = []; // To get P, S, MR, and MC for (let i = 0; i < mat.length; i++) { for (let j = 0; j < mat[0].length; j++) { if (i == j) P.push(mat[i][j]); if (i + j == mat.length - 1) S.push(mat[i][j]); if (i == Math.floor((mat.length - 1) / 2)) MR.push(mat[i][j]); if (j == Math.floor((mat.length - 1) / 2)) MC.push(mat[i][j]); } } S.reverse(); // Stores decimal equivalents // of binary representations let P0 = convert(P); let S0 = convert(S); let MR0 = convert(MR); let MC0 = convert(MC); // Gett the number of set bits let setBitsPS = count((P0 & S0)); let setBitsMM = count((MR0 & MC0)); // Print the answer if (setBitsPS > setBitsMM) document.write("Yes"); else document.write("No"); } // Driver code let mat = [[1, 0, 1], [0, 0, 1], [0, 1, 1]]; checkGoodMatrix(mat); // This code is contributed by _saurabh_jaiswal </script>
No
Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)
Enfoque eficiente: para optimizar el enfoque anterior, el enfoque anterior se puede optimizar recorriendo las diagonales , la fila central y la columna central de cada elemento únicamente. Siga los pasos a continuación para resolver el problema:
- Inicialice los vectores auxiliares , digamos P, S, MR y MC para almacenar los elementos conectados de la diagonal principal, la diagonal transversal, la mitad de la fila y la mitad de la columna, respectivamente.
- Iterar sobre el rango [0, N – 1] :
- Agregue el elemento de (i, i) a P , es decir, la diagonal principal.
- Agregue el elemento de (N – 1 – i, i) a S , es decir, cruce la diagonal.
- Agregue el elemento de ((N-1)/2, i) a MR , es decir, en la mitad de la fila.
- Agregue el elemento de ((N-1)/2, i) a MC , es decir, en la mitad de la columna.
- Iterar sobre el rango [0, N – 1] :
- Compruebe si P[i] y S[i] > MR[i] y MC[i], luego imprima “Sí” y regrese.
- De lo contrario, verifique si p[i] & s[i] < MR[i] & MC[i] , luego escriba “No” y regrese.
- Si ninguna de las condiciones anteriores satisface, escriba «No» .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the matrix // satisfy the given condition or not void checkGoodMatrix( vector<vector<int> > M, int N) { // Stores the binary representation vector<int> p, s, MR, MC; // Iterate over the range [0, N] for (int i = 0; i < N; i++) { // Push element of main diagonal p.push_back(M[i][i]); // Push element of cross diagona s.push_back(M[N - 1 - i][i]); // Push element of Mid row MR.push_back(M[(N - 1) / 2][i]); // Push element of Mid column MC.push_back(M[i][(N - 1) / 2]); } // Check if S & P > MR & MC for (int i = 0; i < N; i++) { if (p[i] & s[i] > MR[i] & MC[i]) { cout << "Yes"; return; } else if (p[i] & s[i] < MR[i] & MC[i]) { cout << "No"; return; } } cout << "No"; } // Driver Code int main() { // Given matrix vector<vector<int> > M{ { 0, 1, 1 }, { 0, 0, 0 }, { 0, 1, 1 } }; // Size of the matrix int N = M.size(); checkGoodMatrix(M, N); return 0; }
Java
// Java program for the above approach import java.util.Vector; class GFG{ static void checkGoodMatrix(int[][] M, int N) { // Stores the binary representation Vector<Integer> p = new Vector<Integer>(); Vector<Integer> s = new Vector<Integer>(); Vector<Integer> MR = new Vector<Integer>(); Vector<Integer> MC = new Vector<Integer>(); // Iterate over the range [0, N] for(int i = 0; i < N; i++) { // Push element of main diagonal p.add(M[i][i]); // Push element of cross diagona s.add(M[N - 1 - i][i]); // Push element of Mid row MR.add(M[(N - 1) / 2][i]); // Push element of Mid column MC.add(M[i][(N - 1) / 2]); } // Check if S & P > MR & MC for(int i = 0; i < N; i++) { int P = p.get(i); int S = s.get(i); int Mr = MR.get(i); int Mc = MC.get(i); if ((P & S) > (Mr & Mc)) { System.out.print("Yes"); return; } else if ((P & S) < (Mr & Mc)) { System.out.print("No"); return; } } System.out.print("No"); } // Driver code public static void main(String[] args) { // Given matrix int[][] M = { { 0, 1, 1 }, { 0, 0, 0 }, { 0, 1, 1 } }; // Size of the matrix int N = M.length; checkGoodMatrix(M, N); } } // This code is contributed by abhinavjain194
Python3
# Python3 program for the above approach # Function to check if the matrix # satisfy the given condition or not def checkGoodMatrix(M, N): # Stores the binary representation p = [] s = [] MR = [] MC = [] # Iterate over the range [0, N] for i in range(N): # Push element of main diagonal p.append(M[i][i]) # Push element of cross diagona s.append(M[N - 1 - i][i]) # Push element of Mid row MR.append(M[(N - 1) // 2][i]) # Push element of Mid column MC.append(M[i][(N - 1) // 2]) # Check if S & P > MR & MC for i in range(N): if (p[i] & s[i] > MR[i] & MC[i]): print("Yes") return elif (p[i] & s[i] < MR[i] & MC[i]): print("No") return print("No") # Driver Code # Given matrix M = [ [ 0, 1, 1 ], [ 0, 0, 0 ], [ 0, 1, 1 ] ] # Size of the matrix N = len(M) checkGoodMatrix(M, N) # This code is contributed by SHUBHAMSINGH10
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { static void checkGoodMatrix(int[,] M, int N) { // Stores the binary representation List<int> p = new List<int>(); List<int> s = new List<int>(); List<int> MR = new List<int>(); List<int> MC = new List<int>(); // Iterate over the range [0, N] for(int i = 0; i < N; i++) { // Push element of main diagonal p.Add(M[i,i]); // Push element of cross diagona s.Add(M[N - 1 - i,i]); // Push element of Mid row MR.Add(M[(N - 1) / 2,i]); // Push element of Mid column MC.Add(M[i,(N - 1) / 2]); } // Check if S & P > MR & MC for(int i = 0; i < N; i++) { int P = p[i]; int S = s[i]; int Mr = MR[i]; int Mc = MC[i]; if ((P & S) > (Mr & Mc)) { Console.WriteLine("Yes"); return; } else if ((P & S) < (Mr & Mc)) { Console.WriteLine("No"); return; } } Console.WriteLine("No"); } static void Main() { // Given matrix int[,] M = { { 0, 1, 1 }, { 0, 0, 0 }, { 0, 1, 1 } }; // Size of the matrix int N = 3; checkGoodMatrix(M, N); } } // This code is contributed by mukesh07.
Javascript
<script> // JavaScript program for the above approach function checkGoodMatrix(M, N) { // Stores the binary representation let p = []; let s = []; let MR = []; let MC = []; // Iterate over the range [0, N] for(let i = 0; i < N; i++) { // Push element of main diagonal p.push(M[i][i]); // Push element of cross diagona s.push(M[N - 1 - i][i]); // Push element of Mid row MR.push(M[parseInt((N - 1) / 2, 10)][i]); // Push element of Mid column MC.push(M[i][parseInt((N - 1) / 2, 10)]); } // Check if S & P > MR & MC for(let i = 0; i < N; i++) { let P = p[i]; let S = s[i]; let Mr = MR[i]; let Mc = MC[i]; if ((P & S) > (Mr & Mc)) { document.write("Yes"); return; } else if ((P & S) < (Mr & Mc)) { document.write("No"); return; } } document.write("No"); } // Given matrix let M = [ [ 0, 1, 1 ], [ 0, 0, 0 ], [ 0, 1, 1 ] ]; // Size of the matrix let N = M.length; checkGoodMatrix(M, N); </script>
Yes
Complejidad temporal: O(N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por rohitsingh07052 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA