Números altamente compuestos

Un número N se llama altamente compuesto si tiene más divisores que cualquiera de los números más pequeños que N.
Pocos números altamente compuestos son:  

1, 2, 4, 6, 12, 24, 36, 48, 60, 120…. 
 

Comprobar si N es un número altamente compuesto

Dado un número N , la tarea es verificar si N es un número altamente compuesto o no. Si N es un número altamente compuesto, imprima «Sí» , de lo contrario, imprima «No» .
Ejemplos:  

Entrada: N = 60 
Salida: Sí 
60 es un compuesto altamente porque tiene 12 divisores 
y ninguno de los números hasta 59 tiene 12 o más divisores.

Entrada: N = 18 
Salida: No 
 

Acercarse:  

  1. Encuentra el conteo de divisores de N
  2. Ahora, en un bucle de 1 a menos de N, verifique para cada i que si un número de divisores de i es mayor que la cuenta de divisores de N, entonces devuelva falso
  3. De lo contrario, devuelve verdadero al final.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation for checking
// Highly Composite Number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number
// of divisors of the N
int divCount(int n)
{
    // sieve method for prime calculation
    bool hash[n + 1];
    memset(hash, true, sizeof(hash));
    for (int p = 2; p * p < n; p++)
        if (hash[p] == true)
            for (int i = p * 2; i < n; i += p)
                hash[i] = false;
 
    // Traversing through
    // all prime numbers
    int total = 1;
    for (int p = 2; p <= n; p++) {
        if (hash[p]) {
 
            // calculate number of divisor
            // with formula total div =
            // (p1+1) * (p2+1) *.....* (pn+1)
            // where n = (a1^p1)*(a2^p2)....
            // *(an^pn) ai being prime divisor
            // for n and pi are their respective
            // power in factorization
            int count = 0;
            if (n % p == 0) {
                while (n % p == 0) {
                    n = n / p;
                    count++;
                }
                total = total * (count + 1);
            }
        }
    }
    return total;
}
 
// Function to check if a number
// is a highly composite number
bool isHighlyCompositeNumber(int N)
{
    // count number of factors of N
    int NdivCount = divCount(N);
 
    // loop to count number of factors of
    // every number less than N
    for (int i = 1; i < N; i++) {
        int idivCount = divCount(i);
 
        // If any number less than N has
        // more factors than N,
        // then return false
        if (idivCount >= NdivCount)
            return false;
    }
 
    return true;
}
 
// Driver code
int main()
{
    // Given Number N
    int N = 12;
 
    // Function Call
    if (isHighlyCompositeNumber(N))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}

Java

// Java implementation for checking
// Highly Composite Number
import java.util.*;
class GFG{
  
// Function to count the number
// of divisors of the N
static int divCount(int n)
{
    // sieve method for prime calculation
    boolean []hash = new boolean[n + 1];
    Arrays.fill(hash, true);
    for (int p = 2; p * p < n; p++)
        if (hash[p] == true)
            for (int i = p * 2; i < n; i += p)
                hash[i] = false;
  
    // Traversing through
    // all prime numbers
    int total = 1;
    for (int p = 2; p <= n; p++)
    {
        if (hash[p])
        {
  
            // calculate number of divisor
            // with formula total div =
            // (p1+1) * (p2+1) *.....* (pn+1)
            // where n = (a1^p1)*(a2^p2)....
            // *(an^pn) ai being prime divisor
            // for n and pi are their respective
            // power in factorization
            int count = 0;
            if (n % p == 0)
            {
                while (n % p == 0)
                {
                    n = n / p;
                    count++;
                }
                total = total * (count + 1);
            }
        }
    }
    return total;
}
  
// Function to check if a number
// is a highly composite number
static boolean isHighlyCompositeNumber(int N)
{
    // count number of factors of N
    int NdivCount = divCount(N);
  
    // loop to count number of factors of
    // every number less than N
    for (int i = 1; i < N; i++)
    {
        int idivCount = divCount(i);
  
        // If any number less than N has
        // more factors than N,
        // then return false
        if (idivCount >= NdivCount)
            return false;
    }
    return true;
}
  
// Driver code
public static void main(String[] args)
{
    // Given Number N
    int N = 12;
  
    // Function Call
    if (isHighlyCompositeNumber(N))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by gauravrajput1

Python3

# Python3 implementation for checking
# Highly Composite Number
 
# Function to count the number
# of divisors of the N
def divCount(n):
     
    # Sieve method for prime calculation
    Hash = [True for i in range(n + 1)]
     
    p = 2
    while ((p * p) < n):
        if bool(Hash[p]):
            i = p * 2
             
            while i < n:
                Hash[i] = False
                i += p
                 
        p += 1
 
    # Traversing through
    # all prime numbers
    total = 1
     
    for P in range(2, n + 1):
        if (bool(Hash[P])):
 
            # Calculate number of divisor
            # with formula total div =
            # (p1+1) * (p2+1) *.....* (pn+1)
            # where n = (a1^p1)*(a2^p2)....
            # *(an^pn) ai being prime divisor
            # for n and pi are their respective
            # power in factorization
            count = 0
            if (n % P == 0):
                while (n % P == 0):
                    n = n // P
                    count += 1
         
                total = total * (count + 1)
                 
    return total
 
# Function to check if a number
# is a highly composite number
def isHighlyCompositeNumber(N):
     
    # Count number of factors of N
    NdivCount = divCount(N)
 
    # Loop to count number of factors of
    # every number less than N
    for i in range(N):
        idivCount = divCount(i)
 
        # If any number less than N has
        # more factors than N,
        # then return false
        if (idivCount >= NdivCount):
            return bool(False)
 
    return bool(True)
 
# Driver code
 
# Given Number N
N = 12
 
# Function Call
if (bool(isHighlyCompositeNumber(N))):
    print("Yes")
else:
    print("No")
 
# This code is contributed by divyeshrabadiya07

C#

// C# implementation for checking
// Highly Composite Number
using System;
class GFG{
  
// Function to count the number
// of divisors of the N
static int divCount(int n)
{
    // sieve method for prime calculation
    bool []hash = new bool[n + 1];
    for(int i = 0; i < n + 1; i++)
        hash[i] = true;
    for (int p = 2; p * p < n; p++)
        if (hash[p] == true)
            for (int i = p * 2; i < n; i += p)
                hash[i] = false;
  
    // Traversing through
    // all prime numbers
    int total = 1;
    for (int p = 2; p <= n; p++)
    {
        if (hash[p])
        {
  
            // calculate number of divisor
            // with formula total div =
            // (p1+1) * (p2+1) *.....* (pn+1)
            // where n = (a1^p1)*(a2^p2)....
            // *(an^pn) ai being prime divisor
            // for n and pi are their respective
            // power in factorization
            int count = 0;
            if (n % p == 0)
            {
                while (n % p == 0)
                {
                    n = n / p;
                    count++;
                }
                total = total * (count + 1);
            }
        }
    }
    return total;
}
  
// Function to check if a number
// is a highly composite number
static bool isHighlyCompositeNumber(int N)
{
    // count number of factors of N
    int NdivCount = divCount(N);
  
    // loop to count number of factors of
    // every number less than N
    for (int i = 1; i < N; i++)
    {
        int idivCount = divCount(i);
  
        // If any number less than N has
        // more factors than N,
        // then return false
        if (idivCount >= NdivCount)
            return false;
    }
    return true;
}
  
// Driver code
public static void Main(String[] args)
{
    // Given Number N
    int N = 12;
  
    // Function Call
    if (isHighlyCompositeNumber(N))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by shikhasingrajput

Javascript

<script>
 
// Javascript implementation for checking
// Highly Composite Number
 
    // Function to count the number
    // of divisors of the N
    function divCount( n) {
        // sieve method for prime calculation
        let hash = Array(n+1).fill(true);
         
        for ( let p = 2; p * p < n; p++)
            if (hash[p] == true)
                for ( i = p * 2; i < n; i += p)
                    hash[i] = false;
 
        // Traversing through
        // all prime numbers
        let total = 1;
        for ( p = 2; p <= n; p++) {
            if (hash[p]) {
 
                // calculate number of divisor
                // with formula total div =
                // (p1+1) * (p2+1) *.....* (pn+1)
                // where n = (a1^p1)*(a2^p2)....
                // *(an^pn) ai being prime divisor
                // for n and pi are their respective
                // power in factorization
                let count = 0;
                if (n % p == 0) {
                    while (n % p == 0) {
                        n = n / p;
                        count++;
                    }
                    total = total * (count + 1);
                }
            }
        }
        return total;
    }
 
    // Function to check if a number
    // is a highly composite number
    function isHighlyCompositeNumber( N) {
        // count number of factors of N
        let NdivCount = divCount(N);
 
        // loop to count number of factors of
        // every number less than N
        for ( let i = 1; i < N; i++) {
            let idivCount = divCount(i);
 
            // If any number less than N has
            // more factors than N,
            // then return false
            if (idivCount >= NdivCount)
                return false;
        }
        return true;
    }
 
    // Driver code
      
        // Given Number N
        let N = 12;
 
        // Function Call
        if (isHighlyCompositeNumber(N))
            document.write("Yes");
        else
            document.write("No");
 
 
// This code contributed by Rajput-Ji
 
</script>
Producción: 

Yes

 

Complejidad de tiempo: O(n)  
Referencia : http://www.numbersaplenty.com/set/highly_composite_number/
 

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *