Los números feos son números cuyos únicos factores primos son 2, 3 o 5. La secuencia 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15,… muestra los primeros 11 números feos. Por convención, 1 está incluido.
Dado un número n, la tarea es encontrar el n’ésimo número feo.
Ejemplos:
Input : n = 7 Output : 8 Input : n = 10 Output : 12 Input : n = 15 Output : 24 Input : n = 150 Output : 5832
Método 1 (Simple)
Bucle para todos los enteros positivos hasta que el conteo de números feos sea menor que n, si un entero es feo, entonces incremente el conteo de números feos.
Para verificar si un número es feo, divida el número por las mayores potencias divisibles de 2, 3 y 5, si el número se convierte en 1, entonces es un número feo, de lo contrario no lo es.
Por ejemplo, veamos cómo verificar si 300 es feo o no. El mayor poder divisible de 2 es 4, después de dividir 300 entre 4 obtenemos 75. El mayor poder divisible de 3 es 3, luego de dividir 75 entre 3 obtenemos 25. El mayor poder divisible de 5 es 25, después de dividir 25 entre 25 obtenemos 1 Como finalmente obtenemos 1, 300 es un número feo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find nth ugly number #include <iostream> using namespace std; // This function divides a by greatest // divisible power of b int maxDivide(int a, int b) { while (a % b == 0) a = a / b; return a; } // Function to check if a number is ugly or not int isUgly(int no) { no = maxDivide(no, 2); no = maxDivide(no, 3); no = maxDivide(no, 5); return (no == 1) ? 1 : 0; } // Function to get the nth ugly number int getNthUglyNo(int n) { int i = 1; // Ugly number count int count = 1; // Check for all integers until ugly // count becomes n while (n > count) { i++; if (isUgly(i)) count++; } return i; } // Driver Code int main() { // Function call unsigned no = getNthUglyNo(150); cout << "150th ugly no. is " << no; return 0; } // This code is contributed by shivanisinghss2110
C
// C program to find nth ugly number #include <stdio.h> #include <stdlib.h> // This function divides a by greatest divisible // power of b int maxDivide(int a, int b) { while (a % b == 0) a = a / b; return a; } // Function to check if a number is ugly or not int isUgly(int no) { no = maxDivide(no, 2); no = maxDivide(no, 3); no = maxDivide(no, 5); return (no == 1) ? 1 : 0; } // Function to get the nth ugly number int getNthUglyNo(int n) { int i = 1; // ugly number count int count = 1; // Check for all integers until ugly count // becomes n while (n > count) { i++; if (isUgly(i)) count++; } return i; } // Driver Code int main() { // Function call unsigned no = getNthUglyNo(150); printf("150th ugly no. is %d ", no); getchar(); return 0; }
Java
// Java program to find nth ugly number class GFG { /*This function divides a by greatest divisible power of b*/ static int maxDivide(int a, int b) { while (a % b == 0) a = a / b; return a; } /* Function to check if a number is ugly or not */ static int isUgly(int no) { no = maxDivide(no, 2); no = maxDivide(no, 3); no = maxDivide(no, 5); return (no == 1) ? 1 : 0; } /* Function to get the nth ugly number*/ static int getNthUglyNo(int n) { int i = 1; // ugly number count int count = 1; // check for all integers // until count becomes n while (n > count) { i++; if (isUgly(i) == 1) count++; } return i; } /* Driver Code*/ public static void main(String args[]) { int no = getNthUglyNo(150); // Function call System.out.println("150th ugly " + "no. is " + no); } } // This code has been contributed by // Amit Khandelwal (Amit Khandelwal 1)
Python3
# Python3 code to find nth ugly number # This function divides a by greatest # divisible power of b def maxDivide(a, b): while a % b == 0: a = a / b return a # Function to check if a number # is ugly or not def isUgly(no): no = maxDivide(no, 2) no = maxDivide(no, 3) no = maxDivide(no, 5) return 1 if no == 1 else 0 # Function to get the nth ugly number def getNthUglyNo(n): i = 1 # ugly number count count = 1 # Check for all integers until # ugly count becomes n while n > count: i += 1 if isUgly(i): count += 1 return i # Driver code no = getNthUglyNo(150) print("150th ugly no. is ", no) # This code is contributed by "Sharad_Bhardwaj".
C#
// C# program to find nth ugly number using System; class GFG { /*This function divides a by greatest divisible power of b*/ static int maxDivide(int a, int b) { while (a % b == 0) a = a / b; return a; } /* Function to check if a number is ugly or not */ static int isUgly(int no) { no = maxDivide(no, 2); no = maxDivide(no, 3); no = maxDivide(no, 5); return (no == 1) ? 1 : 0; } /* Function to get the nth ugly number*/ static int getNthUglyNo(int n) { int i = 1; // ugly number count int count = 1; // Check for all integers // until count becomes n while (n > count) { i++; if (isUgly(i) == 1) count++; } return i; } // Driver code public static void Main() { int no = getNthUglyNo(150); // Function call Console.WriteLine("150th ugly" + " no. is " + no); } } // This code is contributed by Sam007.
PHP
<?php // PHP program to find nth ugly number // This function divides a by // greatest divisible power of b function maxDivide($a, $b) { while ($a % $b == 0) $a = $a / $b; return $a; } // Function to check if a // number is ugly or not function isUgly($no) { $no = maxDivide($no, 2); $no = maxDivide($no, 3); $no = maxDivide($no, 5); return ($no == 1)? 1 : 0; } // Function to get the nth // ugly number function getNthUglyNo($n) { $i = 1; // ugly number count $count = 1; // Check for all integers // until ugly count becomes n while ($n > $count) { $i++; if (isUgly($i)) $count++; } return $i; } // Driver Code $no = getNthUglyNo(150); echo "150th ugly no. is ". $no; // This code is contributed by Sam007 ?>
Javascript
<script> // javascript program to find nth ugly number /* * This function divides a by greatest divisible power of b */ function maxDivide(a , b) { while (a % b == 0) a = a / b; return a; } /* * Function to check if a number is ugly or not */ function isUgly(no) { no = maxDivide(no, 2); no = maxDivide(no, 3); no = maxDivide(no, 5); return (no == 1) ? 1 : 0; } /* * Function to get the nth ugly number */ function getNthUglyNo(n) { var i = 1; // ugly number count var count = 1; // check for all integers // until count becomes n while (n > count) { i++; if (isUgly(i) == 1) count++; } return i; } /* Driver Code */ var no = getNthUglyNo(150); // Function call document.write("150th ugly " + "no. is " + no); // This code is contributed by shikhasingrajput </script>
150th ugly no. is 5832
Este método no es eficiente en el tiempo ya que verifica todos los números enteros hasta que el conteo de números feos se convierte en n, pero la complejidad del espacio de este método es O (1)
Método 2 (Usar programación dinámica)
Aquí hay una solución eficiente en el tiempo con O (n) espacio adicional . La secuencia de números feos es 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, …
porque cada número solo se puede dividir por 2, 3, 5, una forma de ver la secuencia. es dividir la secuencia en tres grupos de la siguiente manera:
(1) 1×2, 2×2, 3×2, 4×2, 5×2, …
(2) 1×3, 2×3, 3×3, 4×3, 5×3, …
(3) 1×5, 2×5, 3×5, 4×5, 5×5, …
Podemos encontrar que cada subsecuencia es la secuencia fea en sí misma (1, 2, 3, 4, 5, …) multiplicar 2, 3, 5. Luego usamos un método de combinación similar al ordenamiento por combinación, para obtener cada número feo de los tres subsecuencias. En cada paso elegimos el más pequeño y avanzamos un paso después.
1 Declare an array for ugly numbers: ugly[n] 2 Initialize first ugly no: ugly[0] = 1 3 Initialize three array index variables i2, i3, i5 to point to 1st element of the ugly array: i2 = i3 = i5 =0; 4 Initialize 3 choices for the next ugly no: next_multiple_of_2 = ugly[i2]*2; next_multiple_of_3 = ugly[i3]*3 next_multiple_of_5 = ugly[i5]*5; 5 Now go in a loop to fill all ugly numbers till 150: For (i = 1; i < 150; i++ ) { /* These small steps are not optimized for good readability. Will optimize them in C program */ next_ugly_no = Min(next_multiple_of_2, next_multiple_of_3, next_multiple_of_5); ugly[i] = next_ugly_no if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2]*2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3]*3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5]*5; } }/* end of for loop */ 6.return next_ugly_no
Ejemplo:
Veamos cómo funciona
initialize ugly[] = | 1 | i2 = i3 = i5 = 0; First iteration ugly[1] = Min(ugly[i2]*2, ugly[i3]*3, ugly[i5]*5) = Min(2, 3, 5) = 2 ugly[] = | 1 | 2 | i2 = 1, i3 = i5 = 0 (i2 got incremented ) Second iteration ugly[2] = Min(ugly[i2]*2, ugly[i3]*3, ugly[i5]*5) = Min(4, 3, 5) = 3 ugly[] = | 1 | 2 | 3 | i2 = 1, i3 = 1, i5 = 0 (i3 got incremented ) Third iteration ugly[3] = Min(ugly[i2]*2, ugly[i3]*3, ugly[i5]*5) = Min(4, 6, 5) = 4 ugly[] = | 1 | 2 | 3 | 4 | i2 = 2, i3 = 1, i5 = 0 (i2 got incremented ) Fourth iteration ugly[4] = Min(ugly[i2]*2, ugly[i3]*3, ugly[i5]*5) = Min(6, 6, 5) = 5 ugly[] = | 1 | 2 | 3 | 4 | 5 | i2 = 2, i3 = 1, i5 = 1 (i5 got incremented ) Fifth iteration ugly[4] = Min(ugly[i2]*2, ugly[i3]*3, ugly[i5]*5) = Min(6, 6, 10) = 6 ugly[] = | 1 | 2 | 3 | 4 | 5 | 6 | i2 = 3, i3 = 2, i5 = 1 (i2 and i3 got incremented ) Will continue same way till I < 150
C++
// C++ program to find n'th Ugly number #include <bits/stdc++.h> using namespace std; // Function to get the nth ugly number unsigned getNthUglyNo(unsigned n) { // To store ugly numbers unsigned ugly[n]; unsigned i2 = 0, i3 = 0, i5 = 0; unsigned next_multiple_of_2 = 2; unsigned next_multiple_of_3 = 3; unsigned next_multiple_of_5 = 5; unsigned next_ugly_no = 1; ugly[0] = 1; for (int i = 1; i < n; i++) { next_ugly_no = min( next_multiple_of_2, min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2] * 2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3] * 3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5] * 5; } } // End of for loop (i=1; i<n; i++) return next_ugly_no; } // Driver Code int main() { int n = 150; cout << getNthUglyNo(n); return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804)
C
// C program to find n'th Ugly number #include <stdio.h> // Find minimum between two numbers. int min(int num1, int num2) { return (num1 > num2) ? num2 : num1; } // Function to get the nth ugly number unsigned getNthUglyNo(unsigned n) { // To store ugly numbers unsigned ugly[n]; unsigned i2 = 0, i3 = 0, i5 = 0; unsigned next_multiple_of_2 = 2; unsigned next_multiple_of_3 = 3; unsigned next_multiple_of_5 = 5; unsigned next_ugly_no = 1; ugly[0] = 1; for (int i = 1; i < n; i++) { next_ugly_no = min( next_multiple_of_2, min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2] * 2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3] * 3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5] * 5; } } // End of for loop (i=1; i<n; i++) return next_ugly_no; } // Driver Code int main() { int n = 150; printf("%u",getNthUglyNo(n)); return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804)
Java
// Java program to find nth ugly number import java.lang.Math; class UglyNumber { // Function to get the nth ugly number int getNthUglyNo(int n) { // To store ugly numbers int ugly[] = new int[n]; int i2 = 0, i3 = 0, i5 = 0; int next_multiple_of_2 = 2; int next_multiple_of_3 = 3; int next_multiple_of_5 = 5; int next_ugly_no = 1; ugly[0] = 1; for (int i = 1; i < n; i++) { next_ugly_no = Math.min(next_multiple_of_2, Math.min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2] * 2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3] * 3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5] * 5; } } // End of for loop (i=1; i<n; i++) return next_ugly_no; } // Driver code public static void main(String args[]) { int n = 150; // Function call UglyNumber obj = new UglyNumber(); System.out.println(obj.getNthUglyNo(n)); } } // This code has been contributed by Amit Khandelwal (Amit // Khandelwal 1)
Python
# Python program to find n'th Ugly number # Function to get the nth ugly number def getNthUglyNo(n): ugly = [0] * n # To store ugly numbers # 1 is the first ugly number ugly[0] = 1 # i2, i3, i5 will indicate indices for # 2,3,5 respectively i2 = i3 = i5 = 0 # Set initial multiple value next_multiple_of_2 = 2 next_multiple_of_3 = 3 next_multiple_of_5 = 5 # Start loop to find value from # ugly[1] to ugly[n] for l in range(1, n): # Choose the min value of all # available multiples ugly[l] = min(next_multiple_of_2, next_multiple_of_3, next_multiple_of_5) # Increment the value of index accordingly if ugly[l] == next_multiple_of_2: i2 += 1 next_multiple_of_2 = ugly[i2] * 2 if ugly[l] == next_multiple_of_3: i3 += 1 next_multiple_of_3 = ugly[i3] * 3 if ugly[l] == next_multiple_of_5: i5 += 1 next_multiple_of_5 = ugly[i5] * 5 # Return ugly[n] value return ugly[-1] # Driver Code def main(): n = 150 print getNthUglyNo(n) if __name__ == '__main__': main() # This code is contributed by Neelam Yadav
C#
// C# program to count inversions in an array using System; using System.Collections.Generic; class GFG { // Function to get the nth ugly number static int getNthUglyNo(int n) { // To store ugly numbers int[] ugly = new int[n]; int i2 = 0, i3 = 0, i5 = 0; int next_multiple_of_2 = 2; int next_multiple_of_3 = 3; int next_multiple_of_5 = 5; int next_ugly_no = 1; ugly[0] = 1; for (int i = 1; i < n; i++) { next_ugly_no = Math.Min(next_multiple_of_2, Math.Min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2] * 2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3] * 3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5] * 5; } } return next_ugly_no; } // Driver code public static void Main() { int n = 150; // Function call Console.WriteLine(getNthUglyNo(n)); } } // This code is contributed by Sam007
PHP
<?php // PHP program to find // n'th Ugly number // Function to get the // nth ugly number function getNthUglyNo($n) { // To store ugly numbers $ugly = array_fill(0, $n, 0); $i2 = 0; $i3 = 0; $i5 = 0; $next_multiple_of_2 = 2; $next_multiple_of_3 = 3; $next_multiple_of_5 = 5; $next_ugly_no = 1; $ugly[0] = 1; for ($i = 1; $i < $n; $i++) { $next_ugly_no = min($next_multiple_of_2, min($next_multiple_of_3, $next_multiple_of_5)); $ugly[$i] = $next_ugly_no; if ($next_ugly_no == $next_multiple_of_2) { $i2 = $i2 + 1; $next_multiple_of_2 = $ugly[$i2] * 2; } if ($next_ugly_no == $next_multiple_of_3) { $i3 = $i3 + 1; $next_multiple_of_3 = $ugly[$i3] * 3; } if ($next_ugly_no == $next_multiple_of_5) { $i5 = $i5 + 1; $next_multiple_of_5 = $ugly[$i5] * 5; } } /*End of for loop (i=1; i<n; i++) */ return $next_ugly_no; } // Driver code $n = 150; echo getNthUglyNo($n); // This code is contributed by mits ?>
Javascript
<script> // javascript program to find nth ugly numberclass UglyNumber // Function to get the nth ugly number function getNthUglyNo(n) { // To store ugly numbers var ugly = Array.from({length: n}, (_, i) => 0); var i2 = 0, i3 = 0, i5 = 0; var next_multiple_of_2 = 2; var next_multiple_of_3 = 3; var next_multiple_of_5 = 5; var next_ugly_no = 1; ugly[0] = 1; for (i = 1; i < n; i++) { next_ugly_no = Math.min(next_multiple_of_2, Math.min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2 + 1; next_multiple_of_2 = ugly[i2] * 2; } if (next_ugly_no == next_multiple_of_3) { i3 = i3 + 1; next_multiple_of_3 = ugly[i3] * 3; } if (next_ugly_no == next_multiple_of_5) { i5 = i5 + 1; next_multiple_of_5 = ugly[i5] * 5; } } // End of for loop (i=1; i<n; i++) return next_ugly_no; } // Driver code var n = 150; // Function call document.write(getNthUglyNo(n)); // This code is contributed by Amit Katiyar </script>
5832
Complejidad temporal: O(n)
Espacio auxiliar: O(n)
Número súper feo (Número cuyos factores primos están en el conjunto dado)
Método 3 (usando la estructura de datos SET en C++, Javascript y TreeSet en JAVA)
En este método, SET estructura de datos para almacenar el mínimo de los 3 números feos generados que serán el i -ésimo Número feo almacenado en la primera posición del conjunto. SET Estructura de datos como un conjunto almacena todos los elementos en orden ascendente
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Implementation of the above approach #include <bits/stdc++.h> using namespace std; int nthUglyNumber(int n) { // Base cases... if (n == 1 or n == 2 or n == 3 or n == 4 or n == 5) return n; set<long long int> s; s.insert(1); n--; while (n) { auto it = s.begin(); // Get the beginning element of the set long long int x = *it; // Deleting the ith element s.erase(it); // Inserting all the other options s.insert(x * 2); s.insert(x * 3); s.insert(x * 5); n--; } // The top of the set represents the nth ugly number return *s.begin(); } // Driver Code int main() { int n = 150; // Function call cout << nthUglyNumber(n); } // Contributed by:- Soumak Poddar
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG { static long nthUglyNumber(int n) { TreeSet<Long> t = new TreeSet<>(); // Ugly number sequence starts with 1 t.add(1L); int i = 1; // when i==n we have the nth ugly number while (i < n) { // remove the ith ugly number and add back its // multiples of 2,3 and 5 back to the set long temp = t.pollFirst(); t.add(temp * 2); t.add(temp * 3); t.add(temp * 5); i++; // the first element of set is always the ith // ugly number } return t.pollFirst(); } public static void main(String[] args) { int n = 150; System.out.println(nthUglyNumber(n)); } } // Contributed by:- Saswata Halder
Python3
# Python Implementation of the above approach def nthUglyNumber(n): # Base cases... if (n == 1 or n == 2 or n == 3 or n == 4 or n == 5): return n s = [1] n-=1 while (n): it = s[0] # Get the beginning element of the set x = it # Deleting the ith element s = s[1:] s = set(s) # Inserting all the other options s.add(x * 2) s.add(x * 3) s.add(x * 5) s = list(s) s.sort() n -= 1 # The top of the set represents the nth ugly number return s[0] # Driver Code n = 150 # Function call print( nthUglyNumber(n)) # This code is contributed by Shubham Singh
C#
/*package whatever //do not write package name here */ using System; using System.Linq; using System.Collections.Generic; public class GFG { static long nthUglyNumber(int n) { SortedSet<long> t = new SortedSet<long>(); // Ugly number sequence starts with 1 t.Add(1L); int i = 1; // when i==n we have the nth ugly number while (i < n) { // remove the ith ugly number and add back its // multiples of 2,3 and 5 back to the set long temp = t.FirstOrDefault(); t.Remove(temp); t.Add(temp * 2); t.Add(temp * 3); t.Add(temp * 5); i++; // the first element of set is always the ith // ugly number } return t.FirstOrDefault(); } public static void Main(String[] args) { int n = 150; Console.WriteLine(nthUglyNumber(n)); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program for the above approach // Print nth Ugly number function nthUglyNumber(n) { // Base cases... if (n == 1 || n == 2 || n == 3 || n == 4 || n == 5) { return n; } var s = [1]; n = n - 1; while(n) { var it = s[0]; //Get the beginning element of the set var x = it; // Deleting the ith element s = s.slice(1); s = new Set(s); //Inserting all the other options s.add(x * 2); s.add(x * 3); s.add(x * 5); s = Array.from(s); s.sort(function(a, b){return a - b}); n = n - 1; } // The top of the set represents the nth ugly number return s[0]; } // Driver Code var n = 150; // Function Call document.write(nthUglyNumber(n)); // This code is contributed by kothavvsaakash </script>
5832
Complejidad de tiempo:- O(N log N)
Espacio auxiliar:- O(N)
Método 4 (usando la búsqueda binaria)
- Este método es adecuado si tiene un valor máximo para n. El no será de la forma x=pow(2,p)*pow(3,q)*pow(5,r).
- Busque desde bajo = 1 hasta alto = 21474836647. Esperamos que el enésimo feo no esté en este rango.
- Así que hacemos una búsqueda binaria. Ahora supongamos que estamos en la mitad, ahora vamos a encontrar el número total de números feos menor que la mitad y pondremos nuestras condiciones en consecuencia.
A continuación se muestra el código CPP aproximado:
C++
// CPP program for the above approach #include <bits/stdc++.h> using namespace std; // Print nth Ugly number int nthUglyNumber(int n) { int pow[40] = { 1 }; // stored powers of 2 from // pow(2,0) to pow(2,30) for (int i = 1; i <= 30; ++i) pow[i] = pow[i - 1] * 2; // Initialized low and high int l = 1, r = 2147483647; int ans = -1; // Applying Binary Search while (l <= r) { // Found mid int mid = l + ((r - l) / 2); // cnt stores total numbers of ugly // number less than mid int cnt = 0; // Iterate from 1 to mid for (long long i = 1; i <= mid; i *= 5) { // Possible powers of i less than mid is i for (long long j = 1; j * i <= mid; j *= 3) { // possible powers of 3 and 5 such that // their product is less than mid // using the power array of 2 (pow) we are // trying to find the max power of 2 such // that i*J*power of 2 is less than mid cnt += upper_bound(pow, pow + 31, mid / (i * j)) - pow; } } // If total numbers of ugly number // less than equal // to mid is less than n we update l if (cnt < n) l = mid + 1; // If total numbers of ugly number // less than equal to // mid is greater than n we update // r and ans simultaneously. else r = mid - 1, ans = mid; } return ans; } // Driver Code int main() { int n = 150; // Function Call cout << nthUglyNumber(n); return 0; }
Java
// JAVA program for the above approach import java.util.*; class GFG { static int upperBound(int[] a, int low, int high, int element) { while(low < high) { int middle = low + (high - low)/2; if(a[middle] > element) high = middle; else low = middle + 1; } return low; } // Print nth Ugly number static int nthUglyNumber(int n) { int pow[] = new int[40]; Arrays.fill(pow, 1); // stored powers of 2 from // Math.pow(2,0) to Math.pow(2,30) for (int i = 1; i <= 30; ++i) pow[i] = pow[i - 1] * 2; // Initialized low and high int l = 1, r = 2147483647; int ans = -1; // Applying Binary Search while (l <= r) { // Found mid int mid = l + ((r - l) / 2); // cnt stores total numbers of ugly // number less than mid int cnt = 0; // Iterate from 1 to mid for (long i = 1; i <= mid; i *= 5) { // Possible powers of i less than mid is i for (long j = 1; j * i <= mid; j *= 3) { // possible powers of 3 and 5 such that // their product is less than mid // using the power array of 2 (pow) we are // trying to find the max power of 2 such // that i*J*power of 2 is less than mid cnt += upperBound(pow,0, 31, (int)(mid / (i * j))); } } // If total numbers of ugly number // less than equal // to mid is less than n we update l if (cnt < n) l = mid + 1; // If total numbers of ugly number // less than equal to // mid is greater than n we update // r and ans simultaneously. else { r = mid - 1; ans = mid; } } return ans; } // Driver Code public static void main(String[] args) { int n = 150; // Function Call System.out.print(nthUglyNumber(n)); } } // This code is contributed by Rajput-Ji
Python3
# Python Program to implement # the above approach def upper_bound(a, low, high, element) : while(low < high) : middle = low + (high - low)//2 if(a[middle] > element) : high = middle else : low = middle + 1 return low # Print nth Ugly number def nthUglyNumber(n) : pow = [1] * 40 # stored powers of 2 from # pow(2,0) to pow(2,30) for i in range(1, 31): pow[i] = pow[i - 1] * 2 # Initialized low and high l = 1 r = 2147483647 ans = -1 # Applying Binary Search while (l <= r) : # Found mid mid = l + ((r - l) // 2) # cnt stores total numbers of ugly # number less than mid cnt = 0 # Iterate from 1 to mid i = 1 while(i <= mid) : # Possible powers of i less than mid is i j = 1 while(j * i <= mid) : # possible powers of 3 and 5 such that # their product is less than mid # using the power array of 2 (pow) we are # trying to find the max power of 2 such # that i*J*power of 2 is less than mid cnt += upper_bound(pow, 0, 31, mid // (i * j)) j *= 3 i *= 5 # If total numbers of ugly number # less than equal # to mid is less than n we update l if (cnt < n): l = mid + 1 # If total numbers of ugly number # less than equal to # mid is greater than n we update # r and ans simultaneously. else : r = mid - 1 ans = mid return ans # Driver Code n = 150 # Function Call print(nthUglyNumber(n)) # This code is contributed by code_hunt.
C#
// C# program for the above approach using System; public class GFG { static int upperBound(int[] a, int low, int high, int element) { while (low < high) { int middle = low + (high - low) / 2; if (a[middle] > element) high = middle; else low = middle + 1; } return low; } // Print nth Ugly number static int nthUglyNumber(int n) { int []pow = new int[40]; for (int i = 0; i <40; ++i) pow[i] = 1; // stored powers of 2 from // Math.Pow(2,0) to Math.Pow(2,30) for (int i = 1; i <= 30; ++i) pow[i] = pow[i - 1] * 2; // Initialized low and high int l = 1, r = 2147483647; int ans = -1; // Applying Binary Search while (l <= r) { // Found mid int mid = l + ((r - l) / 2); // cnt stores total numbers of ugly // number less than mid int cnt = 0; // Iterate from 1 to mid for (long i = 1; i <= mid; i *= 5) { // Possible powers of i less than mid is i for (long j = 1; j * i <= mid; j *= 3) { // possible powers of 3 and 5 such that // their product is less than mid // using the power array of 2 (pow) we are // trying to find the max power of 2 such // that i*J*power of 2 is less than mid cnt += upperBound(pow, 0, 31, (int) (mid / (i * j))); } } // If total numbers of ugly number // less than equal // to mid is less than n we update l if (cnt < n) l = mid + 1; // If total numbers of ugly number // less than equal to // mid is greater than n we update // r and ans simultaneously. else { r = mid - 1; ans = mid; } } return ans; } // Driver Code public static void Main(String[] args) { int n = 150; // Function Call Console.Write(nthUglyNumber(n)); } } // This code is contributed by gauravrajput1
Javascript
<script> // javascript program for the above approach function upperBound(a , low , high , element) { while (low < high) { var middle = low + parseInt((high - low) / 2); if (a[middle] > element) high = middle; else low = middle + 1; } return low; } // Print nth Ugly number function nthUglyNumber(n) { var pow = Array(40).fill(1); // stored powers of 2 from // Math.pow(2,0) to Math.pow(2,30) for (i = 1; i <= 30; ++i) pow[i] = pow[i - 1] * 2; // Initialized low and high var l = 1, r = 2147483647; var ans = -1; // Applying Binary Search while (l <= r) { // Found mid var mid = l + parseInt((r - l) / 2); // cnt stores total numbers of ugly // number less than mid var cnt = 0; // Iterate from 1 to mid for (i = 1; i <= mid; i *= 5) { // Possible powers of i less than mid is i for (j = 1; j * i <= mid; j *= 3) { // possible powers of 3 and 5 such that // their product is less than mid // using the power array of 2 (pow) we are // trying to find the max power of 2 such // that i*J*power of 2 is less than mid cnt += upperBound(pow, 0, 31, parseInt( (mid / (i * j)))); } } // If total numbers of ugly number // less than equal // to mid is less than n we update l if (cnt < n) l = mid + 1; // If total numbers of ugly number // less than equal to // mid is greater than n we update // r and ans simultaneously. else { r = mid - 1; ans = mid; } } return ans; } // Driver Code var n = 150; // Function Call document.write(nthUglyNumber(n)); // This code is contributed by gauravrajput1 </script>
5832
Complejidad de tiempo: O (log N)
Espacio Auxiliar: O(1)
Escriba comentarios si encuentra algún error en el programa anterior u otras formas de resolver el mismo problema.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA