Dado un número N. La tarea es encontrar la suma de la siguiente serie hasta el N-ésimo término:
1 + 22 + 333 + 4444 + …hasta n términos
Ejemplos :
Input: N = 3 Output: 356 Input: N = 10 Output: 12208504795
Acercarse:
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the sum // of given series #include <iostream> #include <math.h> using namespace std; // Function to calculate sum int findSum(int n) { // Return sum return (pow(10, n + 1) * (9 * n - 1) + 10) / pow(9, 3) - n * (n + 1) / 18; } // Driver code int main() { int n = 3; cout << findSum(n); return 0; }
Java
// Java Program to find // Sum of first n terms import java.util.*; class solution { static int calculateSum(int n) { // Returning the final sum return ((int)Math.pow(10, n + 1) * (9 * n - 1) + 10) / (int)Math.pow(9, 3) - n * (n + 1) / 18; } // Driver code public static void main(String ar[]) { // no. of terms to find the sum int n=3; System.out.println("Sum= "+ calculateSum(n)); } } //This code is contributed by Surendra_Gangwar
Python 3
# Python program to find the sum of given series. # Function to calculate sum def solve_sum(n): # Return sum return (pow(10, n + 1)*(9 * n - 1)+10)/pow(9, 3)-n*(n + 1)/18 # driver code n = 3 print(int(solve_sum(n)))
C#
// C# Program to find // Sum of first n terms using System; class solution { static int calculateSum(int n) { // Returning the final sum return ((int)Math.Pow(10, n + 1) * (9 * n - 1) + 10) / (int)Math.Pow(9, 3) - n * (n + 1) / 18; } // Driver code public static void Main() { // no. of terms to find the sum int n=3; Console.WriteLine("Sum= "+ calculateSum(n)); } } //This code is contributed by inder_verma.
PHP
<?php // PHP program to find the sum // of given series // Function to calculate sum function findSum($n) { // Return sum return (pow(10, $n + 1) * (9 * $n - 1) + 10) / pow(9, 3) - $n * ($n + 1) / 18; } // Driver code $n = 3; echo findSum($n); // This code is contributed // by inder_verma. ?>
Javascript
<script> // Javascript Program to find // Sum of first n terms function calculateSum( n) { // Returning the const sum return (parseInt(Math.pow(10, n + 1)) * (9 * n - 1) + 10) / parseInt(Math.pow(9, 3)) - n * (n + 1) / 18; } // Driver code // no. of terms to find the sum let n = 3; document.write("Sum= " + calculateSum(n)); // This code is contributed by 29AjayKumar </script>
Producción:
356
Complejidad de tiempo: O(logn), donde n representa el entero dado, ya que hemos usado la función pow.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.