Dado un número n, hallar la suma de los cuadrados de los primeros n números naturales pares.
Ejemplos:
Input : 3 Output : 56 22 + 42 + 62 = 56 Input : 8 Output : 816 22 + 42 + 62 + 82 + 102 + 122 + 142 + 162
Una solución simple es atravesar n números pares y encontrar la suma de los cuadrados.
C++
// Simple C++ method to find sum // of square of first n even numbers. #include <iostream> using namespace std; int squareSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += (2 * i) * (2 * i); return sum; } // Driver Code int main() { cout << squareSum(8); return 0; }
Java
// Simple Java method to find sum of // square of first n even numbers. import java.io.*; class GFG { static int squareSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += (2 * i) * (2 * i); return sum; } // Driver Code public static void main(String args[]) throws IOException { System.out.println(squareSum(8)); } } // This code is contributed by Nikita Tiwari
Python3
# Simple Python3 code to # find sum of square of # first n even numbers def squareSum( n ): sum = 0 for i in range (0, n + 1): sum += (2 * i) * (2 * i) return sum # driver code ans = squareSum(8) print (ans) # This code is contributed by Saloni Gupta
C#
// Simple C# method to find sum of // square of first n even numbers. using System; class GFG { static int squareSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += (2 * i) * (2 * i); return sum; } // Driver code public static void Main() { Console.Write(squareSum(8)); } } // This code is contributed by vt_m.
PHP
<?php // Simple PHP method to find sum of // square of first n even numbers. function squareSum($n) { $sum = 0; for ($i = 1; $i <= $n; $i++) $sum += (2 * $i) * (2 * $i); return $sum; } echo squareSum(8); // This code is contributed by vt_m. ?>
Javascript
<script> // Simple Javascript method to find sum // of square of first n even numbers. function squareSum(n) { sum = 0; for(let i = 1; i <= n; i++) sum += (2 * i) * (2 * i); return sum; } // Driver Code document.write(squareSum(8)); // This code is contributed by souravmahato348 </script>
Producción:
816
Una solución eficiente es aplicar la siguiente fórmula.
sum = 2 * n * (n + 1) * (2 * n + 1)/3 How does it work? We know that sum of square of first n natural numbers is = n(n+1)/2 Sum of square of first n even natural numbers = 22 + 42 + .... + (2n)2 = 4 * (12 + 22 + .... + n2) = 4 * n(n+1)(2n+1) / 6 = 2 * n(n+1)(2n+1)/3
C++
// Efficient C++ method to find sum // of square of first n even numbers. #include <iostream> using namespace std; int squareSum(int n) { return 2 * n * (n + 1) * (2 * n + 1) / 3; } // Driver code int main() { cout << squareSum(8); return 0; }
Java
// Efficient Java method to find sum // of square of first n even numbers. import java.io.*; class GFG { static int squareSum(int n) { return 2 * n * (n + 1) * (2 * n + 1) / 3; } // Driver Code public static void main(String args[]) throws IOException { System.out.println(squareSum(8)); } } // This code is contributed by Nikita Tiwari
Python3
# Efficient Python3 code to # find sum of square of # first n even numbers def squareSum( n ): return int(2 * n * (n + 1) * (2 * n + 1) / 3) # driver code ans = squareSum(8) print (ans) # This code is contributed by Saloni Gupta
C#
// Efficient C# method to find sum // of square of first n even numbers. using System; class GFG { static int squareSum(int n) { return 2 * n * (n + 1) * (2 * n + 1) / 3; } // driver code public static void Main() { Console.Write(squareSum(8)); } } // This code is contributed by vt_m.
PHP
<?php // Efficient PHP method to find sum of // square of first n even numbers. function squareSum( $n) { return 2 * $n * ($n + 1) * (2 * $n + 1) / 3; } echo squareSum(8); // This code is contributed by vt_m. ?>
Javascript
<script> // JavaScript program to find sum of // square of first n even numbers. function squareSum(n) { let sum = 0; for (let i = 1; i <= n; i++) sum += (2 * i) * (2 * i); return sum; } // Driver code document.write(squareSum(8)); </script>
Salida :
816
Complejidad temporal: O(1) desde que se realizan operaciones constantes
Publicación traducida automáticamente
Artículo escrito por Dharmendra_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA