K-Nearest Neighbors es uno de los algoritmos de clasificación más básicos pero esenciales en Machine Learning. Pertenece al dominio de aprendizaje supervisado y encuentra una intensa aplicación en el reconocimiento de patrones, minería de datos y detección de intrusos.
Es ampliamente disponible en escenarios de la vida real ya que no es paramétrico, lo que significa que no hace suposiciones subyacentes sobre la distribución de datos (a diferencia de otros algoritmos como GMM, que asume una distribución gaussiana de los datos dados) .
Nos dan unos datos previos (también llamados datos de entrenamiento), que clasifican las coordenadas en grupos identificados por un atributo.
Como ejemplo, considere la siguiente tabla de puntos de datos que contienen dos características:
C++
// C++ program to find groups of unknown // Points using K nearest neighbour algorithm. #include <bits/stdc++.h> using namespace std; struct Point { int val; // Group of point double x, y; // Co-ordinate of point double distance; // Distance from test point }; // Used to sort an array of points by increasing // order of distance bool comparison(Point a, Point b) { return (a.distance < b.distance); } // This function finds classification of point p using // k nearest neighbour algorithm. It assumes only two // groups and returns 0 if p belongs to group 0, else // 1 (belongs to group 1). int classifyAPoint(Point arr[], int n, int k, Point p) { // Fill distances of all points from p for (int i = 0; i < n; i++) arr[i].distance = sqrt((arr[i].x - p.x) * (arr[i].x - p.x) + (arr[i].y - p.y) * (arr[i].y - p.y)); // Sort the Points by distance from p sort(arr, arr+n, comparison); // Now consider the first k elements and only // two groups int freq1 = 0; // Frequency of group 0 int freq2 = 0; // Frequency of group 1 for (int i = 0; i < k; i++) { if (arr[i].val == 0) freq1++; else if (arr[i].val == 1) freq2++; } return (freq1 > freq2 ? 0 : 1); } // Driver code int main() { int n = 17; // Number of data points Point arr[n]; arr[0].x = 1; arr[0].y = 12; arr[0].val = 0; arr[1].x = 2; arr[1].y = 5; arr[1].val = 0; arr[2].x = 5; arr[2].y = 3; arr[2].val = 1; arr[3].x = 3; arr[3].y = 2; arr[3].val = 1; arr[4].x = 3; arr[4].y = 6; arr[4].val = 0; arr[5].x = 1.5; arr[5].y = 9; arr[5].val = 1; arr[6].x = 7; arr[6].y = 2; arr[6].val = 1; arr[7].x = 6; arr[7].y = 1; arr[7].val = 1; arr[8].x = 3.8; arr[8].y = 3; arr[8].val = 1; arr[9].x = 3; arr[9].y = 10; arr[9].val = 0; arr[10].x = 5.6; arr[10].y = 4; arr[10].val = 1; arr[11].x = 4; arr[11].y = 2; arr[11].val = 1; arr[12].x = 3.5; arr[12].y = 8; arr[12].val = 0; arr[13].x = 2; arr[13].y = 11; arr[13].val = 0; arr[14].x = 2; arr[14].y = 5; arr[14].val = 1; arr[15].x = 2; arr[15].y = 9; arr[15].val = 0; arr[16].x = 1; arr[16].y = 7; arr[16].val = 0; /*Testing Point*/ Point p; p.x = 2.5; p.y = 7; // Parameter to decide group of the testing point int k = 3; printf ("The value classified to unknown point" " is %d.\n", classifyAPoint(arr, n, k, p)); return 0; }
Java
// Java program to find groups of unknown // Points using K nearest neighbour algorithm. import java.io.*; import java.util.*; class GFG { static class Point { int val; // Group of point double x, y; // Co-ordinate of point double distance; // Distance from test point } // Used to sort an array of points by increasing // order of distance static class comparison implements Comparator<Point> { public int compare(Point a, Point b) { if (a.distance < b.distance) return -1; else if (a.distance > b.distance) return 1; return 0; } } // This function finds classification of point p using // k nearest neighbour algorithm. It assumes only two // groups and returns 0 if p belongs to group 0, else // 1 (belongs to group 1). static int classifyAPoint(Point arr[], int n, int k, Point p) { // Fill distances of all points from p for (int i = 0; i < n; i++) arr[i].distance = Math.sqrt( (arr[i].x - p.x) * (arr[i].x - p.x) + (arr[i].y - p.y) * (arr[i].y - p.y)); // Sort the Points by distance from p Arrays.sort(arr, new comparison()); // Now consider the first k elements and only // two groups int freq1 = 0; // Frequency of group 0 int freq2 = 0; // Frequency of group 1 for (int i = 0; i < k; i++) { if (arr[i].val == 0) freq1++; else if (arr[i].val == 1) freq2++; } return (freq1 > freq2 ? 0 : 1); } // Driver code public static void main(String[] args) { int n = 17; // Number of data points Point[] arr = new Point[n]; for (int i = 0; i < 17; i++) { arr[i] = new Point(); } arr[0].x = 1; arr[0].y = 12; arr[0].val = 0; arr[1].x = 2; arr[1].y = 5; arr[1].val = 0; arr[2].x = 5; arr[2].y = 3; arr[2].val = 1; arr[3].x = 3; arr[3].y = 2; arr[3].val = 1; arr[4].x = 3; arr[4].y = 6; arr[4].val = 0; arr[5].x = 1.5; arr[5].y = 9; arr[5].val = 1; arr[6].x = 7; arr[6].y = 2; arr[6].val = 1; arr[7].x = 6; arr[7].y = 1; arr[7].val = 1; arr[8].x = 3.8; arr[8].y = 3; arr[8].val = 1; arr[9].x = 3; arr[9].y = 10; arr[9].val = 0; arr[10].x = 5.6; arr[10].y = 4; arr[10].val = 1; arr[11].x = 4; arr[11].y = 2; arr[11].val = 1; arr[12].x = 3.5; arr[12].y = 8; arr[12].val = 0; arr[13].x = 2; arr[13].y = 11; arr[13].val = 0; arr[14].x = 2; arr[14].y = 5; arr[14].val = 1; arr[15].x = 2; arr[15].y = 9; arr[15].val = 0; arr[16].x = 1; arr[16].y = 7; arr[16].val = 0; /*Testing Point*/ Point p = new Point(); p.x = 2.5; p.y = 7; // Parameter to decide group of the testing point int k = 3; System.out.println( "The value classified to unknown point is " + classifyAPoint(arr, n, k, p)); } } // This code is contributed by Karandeep1234
Python3
# Python3 program to find groups of unknown # Points using K nearest neighbour algorithm. import math def classifyAPoint(points,p,k=3): ''' This function finds the classification of p using k nearest neighbor algorithm. It assumes only two groups and returns 0 if p belongs to group 0, else 1 (belongs to group 1). Parameters - points: Dictionary of training points having two keys - 0 and 1 Each key have a list of training data points belong to that p : A tuple, test data point of the form (x,y) k : number of nearest neighbour to consider, default is 3 ''' distance=[] for group in points: for feature in points[group]: #calculate the euclidean distance of p from training points euclidean_distance = math.sqrt((feature[0]-p[0])**2 +(feature[1]-p[1])**2) # Add a tuple of form (distance,group) in the distance list distance.append((euclidean_distance,group)) # sort the distance list in ascending order # and select first k distances distance = sorted(distance)[:k] freq1 = 0 #frequency of group 0 freq2 = 0 #frequency og group 1 for d in distance: if d[1] == 0: freq1 += 1 else if d[1] == 1: freq2 += 1 return 0 if freq1>freq2 else 1 # driver function def main(): # Dictionary of training points having two keys - 0 and 1 # key 0 have points belong to class 0 # key 1 have points belong to class 1 points = {0:[(1,12),(2,5),(3,6),(3,10),(3.5,8),(2,11),(2,9),(1,7)], 1:[(5,3),(3,2),(1.5,9),(7,2),(6,1),(3.8,1),(5.6,4),(4,2),(2,5)]} # testing point p(x,y) p = (2.5,7) # Number of neighbours k = 3 print("The value classified to unknown point is: {}".\ format(classifyAPoint(points,p,k))) if __name__ == '__main__': main() # This code is contributed by Atul Kumar (www.fb.com/atul.kr.007)
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA