Dado un número N y la tarea es encontrar el N número hexagonal centrado. Además, encuentre la serie hexagonal centrada.
Ejemplos:
Entrada: N = 2
Salida: 7
Entrada: N = 10
Salida: 271
Números hexagonales centrados: los números hexagonales centrados son números figurados y tienen la forma del hexágono. El número hexagonal centrado es diferente del número hexagonal porque contiene un elemento en el centro.
Algunos de los números hexagonales centrales son:
1, 7, 19, 37, 61, 91, 127, 169 ...
Por ejemplo:
The First N numbers are - 1, 7, 19, 37, 61, 91, 127 ... The cumulative sum of these numbers are - 1, 1+7, 1+7+19, 1+7+19+37... which is nothing but the sequence - 1, 8, 27, 64, 125, 216 ... That is in the form of - 13, 23, 33, 43, 53, 63 ....
Como los números del Hexágono Central suman el N ésimo término será el N 3 . Eso es –
1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 …. hasta N términos = N 3
Entonces, N ésimo término será –
=> N 3 – (N – 1) 3
=> 3*N*(N – 1) + 1
Enfoque: Para encontrar el N -ésimo término del Número Hexagonal Centrado use las fórmulas – 3*N*(N – 1) + 1 .
A continuación se muestra la implementación del enfoque anterior:
C++
// Program to find nth // centered hexadecimal number. #include <bits/stdc++.h> using namespace std; // Function to find centered // hexadecimal number. int centeredHexagonalNumber(int n) { // Formula to calculate nth // centered hexadecimal number // and return it into main function. return 3 * n * (n - 1) + 1; } // Driver Code int main() { int n = 10; cout << n << "th centered hexagonal number: "; cout << centeredHexagonalNumber(n); return 0; }
Java
// Java Program to find nth // centered hexadecimal number import java.io.*; class GFG { // Function to find centered // hexadecimal number static int centeredHexagonalNumber(int n) { // Formula to calculate nth // centered hexadecimal number // and return it into main function return 3 * n * (n - 1) + 1; } // Driver Code public static void main(String args[]) { int n = 10; System.out.print(n + "th centered " + "hexagonal number: "); System.out.println(centeredHexagonalNumber(n)); } } // This code is contributed by Nikita Tiwari.
Python3
# Python 3 program to find nth # centered hexagonal number # Function to find # centered hexagonal number def centeredHexagonalNumber(n) : # Formula to calculate # nth centered hexagonal return 3 * n * (n - 1) + 1 # Driver Code if __name__ == '__main__' : n = 10 print(n, "th centered hexagonal number: " , centeredHexagonalNumber(n)) # This code is contributed # by 'Akanshgupta'
C#
// C# Program to find nth // centered hexadecimal number using System; class GFG { // Function to find centered // hexadecimal number static int centeredHexagonalNumber(int n) { // Formula to calculate nth // centered hexadecimal number // and return it into main function return 3 * n * (n - 1) + 1; } // Driver Code public static void Main() { int n = 10; Console.Write(n + "th centered "+ "hexagonal number: "); Console.Write(centeredHexagonalNumber(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find nth // centered hexadecimal number. // Function to find centered // hexadecimal number. function centeredHexagonalNumber( $n) { // Formula to calculate nth // centered hexadecimal // number and return it // into main function. return 3 * $n * ($n - 1) + 1; } // Driver Code $n = 10; echo $n , "th centered hexagonal number: "; echo centeredHexagonalNumber($n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Program to find nth // centered hexadecimal number. // Function to find centered // hexadecimal number. function centeredHexagonalNumber(n) { // Formula to calculate nth // centered hexadecimal number // and return it into main function. return 3 * n * (n - 1) + 1; } // Driver Code let n = 10; document.write(n + "th centered hexagonal number: "); document.write(centeredHexagonalNumber(n)); // This code is contributed by rishavmahato348. </script>
Producción :
10th centered hexagonal number: 271
Análisis de rendimiento:
- Complejidad del tiempo: en el enfoque dado anteriormente, estamos encontrando el término N del número hexagonal centrado que toma un tiempo constante. Por lo tanto, la complejidad será O(1)
- Complejidad espacial: en el enfoque dado anteriormente, no estamos utilizando ningún otro espacio auxiliar para el cálculo. Por lo tanto, la complejidad del espacio será O(1) .
Serie hexagonal centrada
Dado un número N, la tarea es encontrar series hexagonales centradas hasta N.
Enfoque:
iterar el ciclo usando una variable de ciclo (digamos i ) y encontrar el término i -ésimo del número hexagonal centrado usando las fórmulas – 3*i*( i – 1) + 1
A continuación se muestra la implementación del enfoque anterior:
C++
// Program to find the series // of centered hexadecimal number #include <bits/stdc++.h> using namespace std; // Function to find the // series of centered // hexadecimal number. void centeredHexagonalSeries(int n) { // Formula to calculate // nth centered hexadecimal // number. for (int i = 1; i <= n; i++) cout << 3 * i * (i - 1) + 1 << " "; } // Driver Code int main() { int n = 10; centeredHexagonalSeries(n); return 0; }
Java
// Program to find the series of // centered hexadecimal number. import java.io.*; class GFG { // Function to find the series of // centered hexadecimal number. static void centeredHexagonalSeries(int n) { // Formula to calculate nth // centered hexadecimal number. for (int i = 1; i <= n; i++) System.out.print( 3 * i * (i - 1) + 1 + " "); } // Driver Code public static void main(String args[]) { int n = 10; centeredHexagonalSeries(n); } } // This code is contributed by Nikita Tiwari.
Python3
# Python3 program to find # nth centered hexagonal number # Function to find centered hexagonal # series till n given numbers. def centeredHexagonalSeries(n) : for i in range(1, n + 1) : # Formula to calculate nth # centered hexagonal series. print(3 * i * (i - 1) + 1, end=" ") # Driver Code if __name__ == '__main__' : n = 10 centeredHexagonalSeries(n) # This code is contributed # by 'Akanshgupta'
C#
// C# Program to find the // series of centered // hexadecimal number. using System; class GFG { // Function to find the // series of centered // hexadecimal number. static void centeredHexagonalSeries(int n) { // Formula to calculate nth // centered hexadecimal number. for (int i = 1; i <= n; i++) Console.Write( 3 * i * (i - 1) + 1 + " "); } // Driver Code public static void Main() { int n = 10; centeredHexagonalSeries(n); } } // This code is contributed by vt_m.
PHP
<?php // Program to find the // series of centered // hexadecimal number. // Function to find the // series of centered // hexadecimal number. function centeredHexagonalSeries( $n) { // Formula to calculate // nth centered hexadecimal // number. for ( $i = 1; $i <= $n; $i++) echo 3 * $i * ($i - 1) + 1 ," "; } // Driver Code $n = 10; centeredHexagonalSeries($n); // This code is contributed by anuj_67. ?>
Javascript
<script> // JavaScript program to find the series of // centered hexadecimal number. // Function to find the series of // centered hexadecimal number. function centeredHexagonalSeries(n) { // Formula to calculate nth // centered hexadecimal number. for (let i = 1; i <= n; i++) document.write( 3 * i * (i - 1) + 1 + " "); } // Driver code let n = 10; centeredHexagonalSeries(n); </script>
Producción :
1 7 19 37 61 91 127 169 217 271
Complejidad temporal: O(n)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Dharmendra_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA