Dado un entero positivo n y la tarea es encontrar la suma de la serie 1 + 2 + 2 + 3 + 3 + 3 + . . . + n.
Ejemplos:
Input : n = 5 Output : 55 = 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 5. = 55 Input : n = 10 Output : 385
Método de adición: En el método de adición se suman todos los elementos uno por uno.
A continuación se muestra la implementación de este enfoque.
C++
// Program to find // sum of series // 1 + 2 + 2 + 3 + // . . . + n #include <bits/stdc++.h> using namespace std; // Function that find // sum of series. int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) sum = sum + i; return sum; } // Driver function int main() { int n = 10; // Function call cout << sumOfSeries(n); return 0; }
Java
// Java Program to // find sum of // series // 1 + 2 + 2 + 3 + // . . . + n public class GfG{ // Function that find // sum of series. static int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) sum = sum + i; return sum; } // Driver Code public static void main(String s[]) { int n = 10; System.out.println(sumOfSeries(n)); } } // This code is contributed by Gitanjali
Python3
# Python3 Program to # find sum of series # 1 + 2 + 2 + 3 + # . . . + n import math # Function that find # sum of series. def sumOfSeries( n): sum = 0 for i in range(1, n+1): sum = sum + i * i return sum # Driver method n = 10 # Function call print (sumOfSeries(n)) # This code is contributed by Gitanjali
C#
// C# Program to find sum of // series 1 + 2 + 2 + 3 + . . . + n using System; public class GfG { // Function that find // sum of series. static int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) sum = sum + i; return sum; } // Driver Code public static void Main() { int n = 10; Console.Write(sumOfSeries(n)); } } // This code is contributed by vt_m.
PHP
<?php // Program to find // sum of series // 1 + 2 + 2 + 3 + // . . . + n // Function that find // sum of series. function sumOfSeries($n) { $sum = 0; for ($i = 1; $i <= $n; $i++) for ($j = 1; $j <= $i; $j++) $sum = $sum + $i; return $sum; } // Driver Code $n = 10; // Function call echo(sumOfSeries($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // Javascript Program to // find sum of // series // 1 + 2 + 2 + 3 + // . . . + n // Function that find // sum of series. function sumOfSeries( n) { let sum = 0; for (let i = 1; i <= n; i++) for (let j = 1; j <= i; j++) sum = sum + i; return sum; } // Driver Code let n = 10; document.write(sumOfSeries(n)); // This code contributed by Princi Singh </script>
Producción:
385
Complejidad temporal: O(n 2 )
Espacio auxiliar: O(1)
Método de multiplicación: En el método de multiplicación cada elemento se multiplica por sí mismo y luego se suma.
Input n = 10 sum = 1 + 2 + 2 + 3 + 3 + 3 + 4 + . . . + 10 = 1 + 2 * 2 + 3 * 3 + 4 * 4 + . . . + 10 * 10 = 1 + 4 + 9 + 16 + . . . + 100 = 385
C++
// Program to find // sum of series // 1 + 2 + 2 + 3 + // . . . + n #include <bits/stdc++.h> using namespace std; // Function to find // sum of series. int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum = sum + i * i; return sum; } // Driver function. int main() { int n = 10; // Function call cout << sumOfSeries(n); return 0; }
Java
// Java Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n public class GfG{ // Function that find sum of series. static int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum = sum + i * i; return sum; } // Driver Code public static void main(String args[]) { int n = 10; System.out.println(sumOfSeries(n)); } } // This code is contributed by Gitanjali
Python3
# Python3 Program to # find sum of series # 1 + 2 + 2 + 3 + # . . . + n import math # Function that find # sum of series. def sumOfSeries( n): sum = 0 for i in range(1, n+1): sum = sum + i * i return sum # Driver method n = 10 # Function call print (sumOfSeries(n)) # This code is contributed by Gitanjali.
C#
// C# Program to find sum of series // 1 + 2 + 2 + 3 + . . . + n using System; class GfG { // Function that find sum of series. static int sumOfSeries(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum = sum + i * i; return sum; } // Driver Code public static void Main() { int n = 10; Console.WriteLine(sumOfSeries(n)); } } // This code is contributed by anuj_67.
PHP
<?php // Program to find // sum of series // 1 + 2 + 2 + 3 + // . . . + n // Function to find // sum of series. function sumOfSeries($n) { $sum = 0; for ($i = 1; $i <= $n; $i++) $sum = $sum + $i * $i; return $sum; } // Driver Code $n = 10; // Function call echo(sumOfSeries($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n // Function that find sum of series. function sumOfSeries(n) { var sum = 0; for (let i = 1; i <= n; i++) sum = sum + i * i; return sum; } // Driver Code var n = 10; document.write(sumOfSeries(n)); // This code is contributed by Amit Katiyar </script>
Producción:
385
Complejidad de tiempo: O(n)
Espacio auxiliar: O(1)
Usando la fórmula: También usamos la fórmula para encontrar la suma de series.
Input n = 10; Sum of series = (n * (n + 1) * (2 * n + 1)) / 6 put n = 10 in the above formula sum = (10 * (10 + 1) * (2 * 10 + 1)) / 6 = (10 * 11 * 21) / 6 = 385
C++
// C++ Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n #include <bits/stdc++.h> using namespace std; // Function to find // sum of series. int sumOfSeries(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver function int main() { int n = 10; // Function call cout << sumOfSeries(n); return 0; }
Java
// Java Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n public class GfG { // Function that find // sum of series. static int sumOfSeries(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver Code public static void main(String s[]) { int n = 10; System.out.println(sumOfSeries(n)); } } // This code is contributed by 'Gitanjali'.
Python3
# Python3 Program to # find sum of series # 1 + 2 + 2 + 3 + # . . . + n import math # Function that find # sum of series. def sumOfSeries( n): return ((n * (n + 1) * (2 * n + 1)) / 6) # Driver method n = 10 # Function call print (sumOfSeries(n)) # This code is contributed by Gitanjali
C#
// C# Program to find sum of series // 1 + 2 + 2 + 3 + . . . + n using System; public class GfG { // Function that find // sum of series. static int sumOfSeries(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver Code public static void Main() { int n = 10; Console.WriteLine(sumOfSeries(n)); } } // This code is contributed by 'vt_m'.
PHP
<?php // PHP Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n // Function to find // sum of series. function sumOfSeries($n) { return ($n * ($n + 1) * (2 * $n + 1)) / 6; } // Driver Code $n = 10; // Function call echo(sumOfSeries($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript Program to // find sum of series // 1 + 2 + 2 + 3 + // . . . + n // Function that find // sum of series. function sumOfSeries(n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driver Code var n = 10; document.write(sumOfSeries(n)); // This code is contributed by Amit Katiyar </script>
Producción :
385
Complejidad de tiempo: O(1)
Espacio auxiliar: O(1)
Consulte la suma de cuadrados de números naturales para obtener detalles de la fórmula anterior y más optimizaciones.
Publicación traducida automáticamente
Artículo escrito por Dharmendra_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA