Dados dos enteros positivos A y B tales que A != B , la tarea es encontrar un entero positivo X que maximice la expresión (A AND X) * (B AND X) .
Ejemplo:
Entrada: A = 9 B = 8
Salida: 8
(9 Y 8) * (8 Y 8) = 8 * 8 = 64 (máximo posible)
Entrada: A = 11 y B = 13
Salida: 9
Enfoque ingenuo: uno puede ejecutar un ciclo de 1 a max (A, B) y puede encontrar fácilmente X que maximiza la expresión dada.
Enfoque eficiente: Se sabe que,
(a – b) 2 ≥ 0
lo que implica (a + b) 2 – 4*a*b ≥ 0
lo que implica a * b ≤ (a + b) 2 / 4
Por lo tanto, concluye que a * b será máximo cuando a * b = (a + b) 2/4 lo
que implica a = b
Del resultado anterior, (A Y X) * (B Y X) será máximo cuando (A Y X) = (B Y X)
Ahora X se puede encontrar como:
A = 11 = 1011
B = 13 = 1101
X = ? = abcd
En el 0° lugar: (1 Y d) = (1 Y d) implica d = 0, 1 pero para maximizar (A Y X) * (B Y X) d = 1
En el 1° lugar: (1 Y d) = (0 Y d) implica c = 0
En segundo lugar: (0 Y d) = (1 Y d) implica b = 0
En 3er lugar: (1 Y d) = (1 Y d) implica a = 0, 1 pero para maximizar (A Y X) * (B Y X) a = 1
Por lo tanto, X = 1001 = 9
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 32 // Function to find X according // to the given conditions int findX(int A, int B) { int X = 0; // int can have 32 bits for (int bit = 0; bit < MAX; bit++) { // Temporary ith bit int tempBit = 1 << bit; // Compute ith bit of X according to // given conditions // Expression below is the direct // conclusion from the illustration // we had taken earlier int bitOfX = A & B & tempBit; // Add the ith bit of X to X X += bitOfX; } return X; } // Driver code int main() { int A = 11, B = 13; cout << findX(A, B); return 0; }
C
// C implementation of the approach #include <stdio.h> #define MAX 32 // Function to find X according // to the given conditions int findX(int A, int B) { int X = 0; // int can have 32 bits for (int bit = 0; bit < MAX; bit++) { // Temporary ith bit int tempBit = 1 << bit; // Compute ith bit of X according to // given conditions // Expression below is the direct // conclusion from the illustration // we had taken earlier int bitOfX = A & B & tempBit; // Add the ith bit of X to X X += bitOfX; } return X; } // Driver code int main() { int A = 11, B = 13; printf("%d", findX(A, B)); return 0; } // This code is contributed by phalasi.
Java
// Java implementation of the approach class GFG { static int MAX = 32; // Function to find X according // to the given conditions static int findX(int A, int B) { int X = 0; // int can have 32 bits for (int bit = 0; bit < MAX; bit++) { // Temporary ith bit int tempBit = 1 << bit; // Compute ith bit of X according to // given conditions // Expression below is the direct // conclusion from the illustration // we had taken earlier int bitOfX = A & B & tempBit; // Add the ith bit of X to X X += bitOfX; } return X; } // Driver code public static void main(String []args) { int A = 11, B = 13; System.out.println(findX(A, B)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach MAX = 32 # Function to find X according # to the given conditions def findX(A, B) : X = 0; # int can have 32 bits for bit in range(MAX) : # Temporary ith bit tempBit = 1 << bit; # Compute ith bit of X according to # given conditions # Expression below is the direct # conclusion from the illustration # we had taken earlier bitOfX = A & B & tempBit; # Add the ith bit of X to X X += bitOfX; return X; # Driver code if __name__ == "__main__" : A = 11; B = 13; print(findX(A, B)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { static int MAX = 32; // Function to find X according // to the given conditions static int findX(int A, int B) { int X = 0; // int can have 32 bits for (int bit = 0; bit < MAX; bit++) { // Temporary ith bit int tempBit = 1 << bit; // Compute ith bit of X according to // given conditions // Expression below is the direct // conclusion from the illustration // we had taken earlier int bitOfX = A & B & tempBit; // Add the ith bit of X to X X += bitOfX; } return X; } // Driver code public static void Main(String []args) { int A = 11, B = 13; Console.WriteLine(findX(A, B)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach // Function to find X according // to the given conditions function findX( A, B) { var X = 0; var MAX = 32; // int can have 32 bits for (var bit = 0; bit < MAX; bit++) { // Temporary ith bit var tempBit = 1 << bit; // Compute ith bit of X according to // given conditions // Expression below is the direct // conclusion from the illustration // we had taken earlier var bitOfX = A & B & tempBit; // Add the ith bit of X to X X += bitOfX; } return X; } // Driver code var A = 11, B = 13; document.write(findX(A, B)); // This code is contributed by bunnyram19. </script>
9
Complejidad de tiempo: O (MAX)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por AshaRamMeena y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA