Dado un número entero N . La tarea es encontrar la suma de N términos de la serie dada:
2×3 + 4×4 + 6×5 + 8×6 + … + hasta n términos
Ejemplos:
Input : N = 5 Output : Sum = 170 Input : N = 10 Output : Sum = 990
Sea t N el término N-ésimo de la serie . t 1 = 2 × 3 = (2 × 1)(1 + 2) t 2 = 4 × 4 = (2 × 2)(2 + 2) t 3 = 6 × 5 = (2 × 3)(3 + 2 ) t 4 = 8 × 6 = (2 × 4)(4 + 2) . . . t N = (2 × N)(N + 2) La suma de n términos de la serie,
Sn = t1 + t2 +... + tn =======
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... #include<iostream> using namespace std; // calculate sum upto N term of series void Sum_upto_nth_Term(int n) { int r = n * (n + 1) * (2 * n + 7) / 3; cout << r; } // Driver code int main() { int N = 5; Sum_upto_nth_Term(N) ; return 0; }
Java
// Java program to find sum upto // N term of the series: import java.io.*; class GFG { // calculate sum upto N term of series static void Sum_upto_nth_Term(int n) { int r = n * (n + 1) * (2 * n + 7) / 3; System.out.println(r); } // Driver code public static void main (String[] args) { int N = 5; Sum_upto_nth_Term(N); } }
Python3
# Python program to find sum upto N term of the series: # 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... # calculate sum upto N term of series def Sum_upto_nth_Term(n): return n * (n + 1) * (2 * n + 7) // 3 # Driver code N = 5 print(Sum_upto_nth_Term(N))
C#
// C# program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... using System; class GFG { // calculate sum upto N term of series static void Sum_upto_nth_Term(int n) { int r = n * (n + 1) * (2 * n + 7) / 3; Console.Write(r); } // Driver code public static void Main() { int N = 5; Sum_upto_nth_Term(N); } } // This code is contributed // by Akanksha Rai(Abby_akku)
PHP
<?php // PHP program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... function Sum_upto_nth_Term($n) { $r = $n * ($n + 1) * (2 * $n + 7) / 3; echo $r; } // Driver code $N = 5; Sum_upto_nth_Term($N); // This code is contributed // by Shashank_Sharma ?>
Javascript
<script> // Javascript program to find sum upto // N term of the series: // 2 × 3 + 4 × 4 + 6 × 5 + 8 × 6 + ... // calculate sum upto N term of series function Sum_upto_nth_Term(n) { let r = n * (n + 1) * (2 * n + 7) / 3; document.write(r); } // Driver code let N = 5; Sum_upto_nth_Term(N) ; // This code is contributed by Mayank Tyagi </script>
Producción:
170
Complejidad Temporal: O(1), es una constante.
Espacio Auxiliar: O(1), no se requiere espacio extra.
Publicación traducida automáticamente
Artículo escrito por Sanjit_Prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA