Dado un entero positivo n . La tarea es encontrar la suma de la suma de los cuadrados del primer n número natural.
Ejemplos:
Input : n = 3 Output : 20 Sum of square of first natural number = 1 Sum of square of first two natural number = 1^2 + 2^2 = 5 Sum of square of first three natural number = 1^2 + 2^2 + 3^2 = 14 Sum of sum of square of first three natural number = 1 + 5 + 14 = 20 Input : n = 2 Output : 6
Método 1: O(n) La idea es encontrar la suma de los cuadrados del primer i número natural, donde 1 <= i <= n. Y los suman todos.
Podemos encontrar la suma de los cuadrados de los primeros n números naturales mediante la fórmula: n * (n + 1)* (2*n + 1)/6
A continuación se muestra la implementación de este enfoque:
C++
// CPP Program to find the sum of sum of // squares of first n natural number #include <bits/stdc++.h> using namespace std; // Function to find sum of sum of square of // first n natural number int findSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += ((i * (i + 1) * (2 * i + 1)) / 6); return sum; } // Driven Program int main() { int n = 3; cout << findSum(n) << endl; return 0; }
Java
// Java Program to find the sum of // sum of squares of first n natural // number class GFG { // Function to find sum of sum of // square of first n natural number static int findSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += ((i * (i + 1) * (2 * i + 1)) / 6); return sum; } // Driver Program public static void main(String[] args) { int n = 3; System.out.println( findSum(n)); } } // This code is contributed by // Arnab Kundu
Python3
# Python3 Program to find the sum # of sum of squares of first n # natural number # Function to find sum of sum of # square of first n natural number def findSum(n): summ = 0 for i in range(1, n+1): summ = (summ + ((i * (i + 1) * (2 * i + 1)) / 6)) return summ # Driven Program n = 3 print(int(findSum(n))) # This code is contributed by # Prasad Kshirsagar
C#
// C# Program to find the sum of sum of // squares of first n natural number using System; public class GFG { // Function to find sum of sum of // square of first n natural number static int findSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += ((i * (i + 1) * (2 * i + 1)) / 6); return sum; } // Driver Program static public void Main() { int n = 3; Console.WriteLine(findSum(n)); } } // This code is contributed by // Arnab Kundu.
PHP
<?php // PHP Program to find the sum of // squares of first n natural number // Function to find sum of sum of // square of first n natural number function findSum( $n) { $sum = 0; for ($i = 1; $i <= $n; $i++) $sum += (($i * ($i + 1) * (2 * $i + 1)) / 6); return $sum; } // Driver Code $n = 3; echo findSum($n) ; // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript Program to find the sum of sum of // squares of first n natural number // Function to find sum of sum of square // of first n natural number function findSum(n) { return (n * (n + 1) * (n + 1) * (n + 2)) / 12; } // Driven Program let n = 3; document.write(findSum(n) + "<br>"); // This code is contributed by Mayank Tyagi </script>
20
Complejidad de tiempo: O(n)
Espacio auxiliar: O(1)
Método 2: O(1)
Matemáticamente, necesitamos encontrar, Σ ((i * (i + 1) * (2*i + 1)/6), donde 1 <= i <= n
Entonces, resolvamos esta suma,
Sum = Σ ((i * (i + 1) * (2*i + 1)/6), where 1 <= i <= n = (1/6)*(Σ ((i * (i + 1) * (2*i + 1))) = (1/6)*(Σ ((i2 + i) * (2*i + 1)) = (1/6)*(Σ ((2*i3 + 3*i2 + i)) = (1/6)*(Σ 2*i3 + Σ 3*i2 + Σ i) = (1/6)*(2*Σ i3 + 3*Σ i2 + Σ i) = (1/6)*(2*(i*(i + 1)/2)2 + 3*(i * (i + 1) * (2*i + 1))/6 + i * (i + 1)/2) = (1/6)*(i * (i + 1))((i*(i + 1)/2) + ((2*i + 1)/2) + 1/2) = (1/12) * (i * (i + 1)) * ((i*(i + 1)) + (2*i + 1) + 1) = (1/12) * (i * (i + 1)) * ((i2 + 3 * i + 2) = (1/12) * (i * (i + 1)) * ((i + 1) * (i + 2)) = (1/12) * (i * (i + 1)2 * (i + 2))
A continuación se muestra la implementación de este enfoque:
C++
// CPP Program to find the sum of sum of // squares of first n natural number #include <bits/stdc++.h> using namespace std; // Function to find sum of sum of square // of first n natural number int findSum(int n) { return (n * (n + 1) * (n + 1) * (n + 2)) / 12; } // Driven Program int main() { int n = 3; cout << findSum(n) << endl; return 0; }
Java
// Java Program to find the sum of sum of // squares of first n natural number class GFG { // Function to find sum of sum of // square of first n natural number static int findSum(int n) { return (n * (n + 1) * (n + 1) * (n + 2)) / 12; } // Driver Program public static void main(String[] args) { int n = 3; System.out.println(findSum(n) ); } } // This code is contributed by Arnab Kundu
Python3
# Python3 Program to find the sum # of sum of squares of first n # natural number # Function to find sum of sum of # square of first n natural number def findSum(n): return ((n * (n + 1) * (n + 1) * (n + 2)) / 12) # Driven Program n = 3 print(int(findSum(n))) # This code is contributed by # Prasad Kshirsagar
C#
// C# Program to find the sum of sum of // squares of first n natural number using System; class GFG { // Function to find sum of sum of // square of first n natural number static int findSum(int n) { return (n * (n + 1) * (n + 1) * (n + 2)) / 12; } // Driver Program static public void Main() { int n = 3; Console.WriteLine(findSum(n) ); } } // This code is contributed by Arnab Kundu
PHP
<?php // PHP Program to find the sum of sum of // squares of first n natural number // Function to find sum of sum of square // of first n natural number function findSum($n) { return ($n * ($n + 1) * ($n + 1) * ($n + 2)) / 12; } // Driver Code $n = 3; echo findSum($n) ; // This code is contributed by nitin mittal ?>
Javascript
<script> // js Program to find the sum of sum of // squares of first n natural number // Function to find sum of sum of square // of first n natural number function findSum($n) { return (n * (n + 1) *(n + 1) * (n + 2)) / 12; } // Driver Code n = 3; document.write(findSum(n)) ; // This code is contributed by sravan kumar </script>
20
Complejidad de Tiempo : O(1)
Espacio Auxiliar : O(1)