Dado un semicírculo de radio r , tenemos que encontrar el triángulo más grande que se puede inscribir en el semicírculo, con base en el diámetro.
Ejemplos:
Input: r = 5 Output: 25 Input: r = 8 Output: 64
Enfoque : De la figura, podemos entender claramente que el triángulo más grande que se puede inscribir en el semicírculo tiene una altura r . Además, sabemos que la base tiene una longitud de 2r . Entonces el triángulo es un triángulo isósceles.
Entonces, Área A : = (base * altura)/2 = (2r * r)/2 = r^2
A continuación se muestra la implementación del enfoque anterior :
C++
// C++ Program to find the biggest triangle // which can be inscribed within the semicircle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the triangle float trianglearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the triangle return r * r; } // Driver code int main() { float r = 5; cout << trianglearea(r) << endl; return 0; }
Java
// Java Program to find the biggest triangle // which can be inscribed within the semicircle import java.io.*; class GFG { // Function to find the area // of the triangle static float trianglearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the triangle return r * r; } // Driver code public static void main (String[] args) { float r = 5; System.out.println( trianglearea(r)); } } // This code is contributed // by chandan_jnu.
Python 3
# Python 3 Program to find the biggest triangle # which can be inscribed within the semicircle # Function to find the area # of the triangle def trianglearea(r) : # the radius cannot be negative if r < 0 : return -1 # area of the triangle return r * r # Driver Code if __name__ == "__main__" : r = 5 print(trianglearea(r)) # This code is contributed by ANKITRAI1
C#
// C# Program to find the biggest // triangle which can be inscribed // within the semicircle using System; class GFG { // Function to find the area // of the triangle static float trianglearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the triangle return r * r; } // Driver code public static void Main () { float r = 5; Console.Write(trianglearea(r)); } } // This code is contributed // by ChitraNayal
PHP
<?php // PHP Program to find the biggest // triangle which can be inscribed // within the semicircle // Function to find the area // of the triangle function trianglearea($r) { // the radius cannot be negative if ($r < 0) return -1; // area of the triangle return $r * $r; } // Driver code $r = 5; echo trianglearea($r); // This code is contributed // by inder_verma ?>
Javascript
<script> // javascript Program to find the biggest triangle // which can be inscribed within the semicircle // Function to find the area // of the triangle function trianglearea(r) { // the radius cannot be negative if (r < 0) return -1; // area of the triangle return r * r; } // Driver code var r = 5; document.write( trianglearea(r)); // This code contributed by Princi Singh </script>
Producción:
25
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA