Nos dan un número n, necesitamos encontrar el número icosaédrico centrado en el n-ésimo.
Descripción: Un número icosaédrico centrado es un número figurado centrado que representa un icosaedro .
Las primeras series de números icosaédricos centrados son:
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217……………….
Fórmula matemática para el número icosaédrico centrado en el n :
Ejemplos:
Input : n = 4 Output : 309 Input : n = 12 Output : 6525
A continuación se muestra la implementación de la fórmula anterior.
C++
// C++ Program to find nth // Centered icosahedral number #include <bits/stdc++.h> using namespace std; // Function to find // Centered icosahedral number int centeredIcosahedralNum(int n) { // Formula to calculate nth // Centered icosahedral number // and return it into main function. return (2 * n + 1) * (5 * n * n + 5 * n + 3) / 3; } // Driver Code int main() { int n = 10; cout << centeredIcosahedralNum(n) << endl; n = 12; cout << centeredIcosahedralNum(n) << endl; return 0; }
C
// C Program to find nth // Centered icosahedral number #include <stdio.h> // Function to find // Centered icosahedral number int centeredIcosahedralNum(int n) { // Formula to calculate nth // Centered icosahedral number // and return it into main function. return (2 * n + 1) * (5 * n * n + 5 * n + 3) / 3; } // Driver Code int main() { int n = 10; printf("%d\n",centeredIcosahedralNum(n)); n = 12; printf("%d\n",centeredIcosahedralNum(n)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java Program to find nth // Centered icosahedral number // Java Program to find nth Centered // icosahedral number import java.io.*; class GFG { // Function to find Centered // icosahedral number static int centeredIcosahedralNum(int n) { // Formula to calculate nth Centered // icosahedral number and return it // into main function. return (2 * n + 1) * (5 * n * n + 5 * n + 3) / 3; } // Driver Code public static void main (String[] args) { int n = 10; System.out.println( centeredIcosahedralNum(n)); n = 12; System.out.println( centeredIcosahedralNum(n)); } } // This code is contributed by anuj_67.
Python3
# Python program to find nth # Centered icosahedral number # Function to calculate # Centered icosahedral number def centeredIcosahedralNum(n): # Formula to calculate nth # Centered icosahedral number return ((2 * n + 1) * (5 * n * n + 5 * n + 3) // 3) # Driver Code n = 10 print(centeredIcosahedralNum(n)) n = 12 print(centeredIcosahedralNum(n)) # This code is contributed by ajit.
C#
// C# Program to find nth // Centered icosahedral number // Java Program to find nth Centered // icosahedral number using System; class GFG { // Function to find Centered // icosahedral number static int centeredIcosahedralNum(int n) { // Formula to calculate nth Centered // icosahedral number and return it // into main function. return (2 * n + 1) * (5 * n * n + 5 * n + 3) / 3; } // Driver Code public static void Main () { int n = 10; Console.WriteLine( centeredIcosahedralNum(n)); n = 12; Console.WriteLine( centeredIcosahedralNum(n)); } } // This code is contributed by anuj_67.
PHP
<?php // PHP Program to find nth // Centered icosahedral number // Function to find // Centered icosahedral number function centeredIcosahedralNum($n) { // Formula to calculate nth // Centered icosahedral number // and return it into main function. return (2 * $n + 1) * (5 * $n * $n + 5 * $n + 3) / 3; } // Driver Code $n = 10; echo centeredIcosahedralNum($n),"\n"; $n = 12; echo centeredIcosahedralNum($n),"\n"; // This code is contributed by m_kit ?>
Javascript
<script> // Javascript Program to find nth // Centered icosahedral number // Function to find // Centered icosahedral number function centeredIcosahedralNum(n) { // Formula to calculate nth // Centered icosahedral number // and return it into main function. return parseInt((2 * n + 1) * (5 * n * n + 5 * n + 3) / 3); } // Driver Code let n = 10; document.write(centeredIcosahedralNum(n) + "<br>"); n = 12; document.write(centeredIcosahedralNum(n)); // This code is contributed by souravmahato348. </script>
Producción :
3871 6525
Tiempo Complejidad: O(1)
Espacio Auxiliar: O(1)
Referencia:
https://en.wikipedia.org/wiki/Centered_icosahedral_number