número hexadecagonal

Dado un número n, la tarea es encontrar el n-ésimo número hexadecagonal. 
Un número hexadecagonal es una clase de número figurado y un cuadrado perfecto. Tiene un polígono de dieciséis lados llamado hexadecágono o hexakaidecágono. El n-ésimo número hexadecagonal cuenta el número dieciséis de puntos y todos los demás puntos rodean a su capa sucesiva. 
Ejemplos: 
 

Entrada: 2 
Salida: 16
Entrada: 7 
Salida: 301 
 

figure Formula to calculate hexadecagonal number:

\begin{math}  Hg_{n}=(14n^2-12n)/2 \end{math}

C++

// C++ program to find Nth
// hexadecagon number
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate hexadecagonal number
int hexadecagonalNum(long int n)
{
    return ((14 * n * n) - 12 * n) / 2;
}
 
// Drivers Code
int main()
{
    long int n = 5;
    cout << n << "th Hexadecagonal number : ";
    cout << hexadecagonalNum(n);
    cout << endl;
    n = 9;
    cout << n << "th Hexadecagonal number : ";
    cout << hexadecagonalNum(n);
 
    return 0;
}

C

// C program to find Nth
// hexadecagon number
#include <stdio.h>
 
// Function to calculate hexadecagonal number
int hexadecagonalNum(long int n)
{
    return ((14 * n * n) - 12 * n) / 2;
}
 
// Drivers Code
int main()
{
    long int n = 5;
    printf("%ldth Hexadecagonal number : ",n);
    printf("%d\n",hexadecagonalNum(n));
 
    n = 9;
    printf("%ldth Hexadecagonal number : ",n);
    printf("%d\n",hexadecagonalNum(n));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash

Java

// Java program to find Nth hexadecagon
// number
import java.io.*;
 
class GFG {
 
    // Function to calculate hexadecagonal
    // number
    static long hexadecagonalNum(long n)
    {
        return ((14 * n * n) - 12 * n) / 2;
    }
     
    // Drivers Code
    public static void main (String[] args)
    {
        long n = 5;
        System.out.println( n + "th "
          + "Hexadecagonal number : "
              + hexadecagonalNum(n));
               
        n = 9;
        System.out.println( n + "th "
          + "Hexadecagonal number : "
              + hexadecagonalNum(n));
    }
}
 
// This code contributed by anuj_67.

Python3

# Python program to find Nth
# hexadecagon number
 
# Function to calculate
# hexadecagonal number
def hexadecagonalNum(n):
 
    # Formula to calculate nth
    # Centered hexadecagonal number
    return ((14 * n * n) - 12 * n) // 2
 
# Driver Code
n = 5
print("%sth Hexadecagonal number : " %n,
                    hexadecagonalNum(n))
n = 9
print("%sth Hexadecagonal number : " %n,
                    hexadecagonalNum(n))
                     
# This code is contributed by ajit                

C#

// C# program to find Nth hexadecagon
// number
using System;
class GFG {
 
    // Function to calculate hexadecagonal
    // number
    static long hexadecagonalNum(long n)
    {
        return ((14 * n * n) - 12 * n) / 2;
    }
     
    // Drivers Code
    public static void Main ()
    {
        long n = 5;
        Console.WriteLine( n + "th "
        + "Hexadecagonal number : "
            + hexadecagonalNum(n));
             
        n = 9;
        Console.WriteLine( n + "th "
        + "Hexadecagonal number : "
            + hexadecagonalNum(n));
    }
}
 
// This code contributed by anuj_67.

PHP

<?php
// PHP program to find Nth
// hexadecagon number
 
// Function to calculate
// hexadecagonal number
 
function hexadecagonalNum($n)
{
    return ((14 * $n * $n) - 12 * $n) / 2;
}
 
// Driver Code
$n = 5;
echo $n , "th Hexadecagonal number : ";
echo hexadecagonalNum($n);
echo "\n";
 
$n = 9;
echo $n , "th Hexadecagonal number : ";
echo hexadecagonalNum($n);
 
// This code is contributed bu m_kit
?>

Javascript

<script>
 
// Javascript program to find Nth hexadecagon
// number
 
// Function to calculate hexadecagonal
// number
function hexadecagonalNum(n)
{
    return ((14 * n * n) - 12 * n) / 2;
}
 
// Driver code
var n = 5;
document.write(n + "th " +
               "Hexadecagonal number : " +
               hexadecagonalNum(n) + "<br>");
   
n = 9;
document.write(n + "th " +
               "Hexadecagonal number : " +
               hexadecagonalNum(n));
 
// This code is contributed by Khushboogoyal499
 
</script>

Producción : 
 

5th Hexadecagonal number : 145
9th Hexadecagonal number : 513

Complejidad de tiempo: O(1)
Espacio auxiliar: O(1)
Referencia: https://en.wikipedia.org/wiki/Polygonal_number
 

Publicación traducida automáticamente

Artículo escrito por jit_t y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *