Dado un número entero N , la tarea es verificar si N es un número de Rhonda en base 10.
Los números de Rhonda en base 10 son números si el producto de sus dígitos es igual a 10*Suma de factores primos de N (incluida la multiplicidad).
Ejemplos:
Entrada: N = 1568
Salida: Sí
Explicación:
factorización prima de 1568 = 2 5 * 7 2 .
Suma de factores primos = 2*5+7*2=24.
Producto de dígitos de 1568 = 1*5*6*8=240 = 10*24.
Por lo tanto, 1568 es un número de Rhonda en base 10.Entrada: N = 28
Salida: No
Enfoque: La idea es encontrar la suma de todos los factores primos de N y verificar si diez veces la suma de los factores primos de N es igual al producto de los dígitos de N o no.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to check if N // is a Rhonda number #include <bits/stdc++.h> using namespace std; // Function to find the // product of digits int getProduct(int n) { int product = 1; while (n != 0) { product = product * (n % 10); n = n / 10; } return product; } // Function to find sum of all prime // factors of a given number N int sumOfprimeFactors(int n) { int sum = 0; // add the number of // 2s that divide n while (n % 2 == 0) { sum += 2; n = n / 2; } // N must be odd at this // point. So we can skip // one element for (int i = 3; i <= sqrt(n); i = i + 2) { // While i divides n, // add i and divide n while (n % i == 0) { sum += i; n = n / i; } } // Condition to handle the case when N // is a prime number greater than 2 if (n > 2) sum += n; return sum; } // Function to check if n // is Rhonda number bool isRhondaNum(int N) { return 10 * sumOfprimeFactors(N) == getProduct(N); } // Driver code int main() { int n = 1568; if (isRhondaNum(n)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java program to check if N // is a Rhonda number import java.util.*; import java.lang.*; // import Math; class GFG{ // Function to find the // product of digits static int getProduct(int n) { int product = 1; while (n != 0) { product = product * (n % 10); n = n / 10; } return product; } // Function to find sum of all prime // factors of a given number N static int sumOfprimeFactors(int n) { int sum = 0; // Add the number of // 2s that divide n while (n % 2 == 0) { sum += 2; n = n / 2; } // N must be odd at this // point. So we can skip // one element for(int i = 3; i <= Math.sqrt(n); i = i + 2) { // While i divides n, // add i and divide n while (n % i == 0) { sum += i; n = n / i; } } // Condition to handle the case when N // is a prime number greater than 2 if (n > 2) sum += n; return sum; } // Function to check if n // is Rhonda number static boolean isRhondaNum(int N) { return (10 * sumOfprimeFactors(N) == getProduct(N)); } // Driver Code public static void main(String[] args) { // Given Number n int n = 1568; if (isRhondaNum(n)) { System.out.println("Yes"); } else { System.out.println("No"); } } } // This code is contributed by vikas_g
Python3
# Python3 implementation to check # if N is a Rhonda number import math # Function to find the # product of digits def getProduct(n): product = 1 while (n != 0): product = product * (n % 10) n = n // 10 return product # Function to find sum of all prime # factors of a given number N def sumOfprimeFactors(n): Sum = 0 # Add the number of # 2s that divide n while (n % 2 == 0): Sum += 2 n = n // 2 # N must be odd at this # point. So we can skip # one element for i in range(3, int(math.sqrt(n)) + 1, 2): # While i divides n, # add i and divide n while (n % i == 0): Sum += i n = n // i # Condition to handle the case when N # is a prime number greater than 2 if (n > 2): Sum += n return Sum # Function to check if n # is Rhonda number def isRhondaNum(N): return bool(10 * sumOfprimeFactors(N) == getProduct(N)) # Driver code n = 1568 if (isRhondaNum(n)): print("Yes") else: print("No") # This code is contributed by divyeshrabadiya07
C#
// C# implementation to check if N // is a Rhonda number using System; class GFG{ // Function to find the // product of digits static int getProduct(int n) { int product = 1; while (n != 0) { product = product * (n % 10); n = n / 10; } return product; } // Function to find sum of all prime // factors of a given number N static int sumOfprimeFactors(int n) { int sum = 0; // Add the number of // 2s that divide n while (n % 2 == 0) { sum += 2; n = n / 2; } // N must be odd at this // point. So we can skip // one element for(int i = 3; i <= Math.Sqrt(n); i = i + 2) { // While i divides n, // add i and divide n while (n % i == 0) { sum += i; n = n / i; } } // Condition to handle the case when N // is a prime number greater than 2 if (n > 2) sum += n; return sum; } // Function to check if n // is Rhonda number static bool isRhondaNum(int N) { return (10 * sumOfprimeFactors(N) == getProduct(N)); } // Driver code public static void Main(String []args) { int n = 1568; if (isRhondaNum(n)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } } // This code is contributed by vikas_g
Javascript
<script> // Javascript program to check if N // is a Rhonda number // Function to find the // product of digits function getProduct( n) { let product = 1; while (n != 0) { product = product * (n % 10); n = parseInt(n / 10); } return product; } // Function to find sum of all prime // factors of a given number N function sumOfprimeFactors( n) { let sum = 0; // Add the number of // 2s that divide n while (n % 2 == 0) { sum += 2; n = parseInt(n / 2); } // N must be odd at this // point. So we can skip // one element for ( let i = 3; i <= Math.sqrt(n); i = i + 2) { // While i divides n, // add i and divide n while (n % i == 0) { sum += i; n = parseInt(n / i); } } // Condition to handle the case when N // is a prime number greater than 2 if (n > 2) sum += n; return sum; } // Function to check if n // is Rhonda number function isRhondaNum( N) { return (10 * sumOfprimeFactors(N) == getProduct(N)); } // Driver Code // Given Number n let n = 1568; if (isRhondaNum(n)) { document.write("Yes"); } else { document.write("No"); } // This code is contributed by todaysgaurav </script>
Yes
Complejidad del tiempo: O(sqrt(N))
Referencias: OEIS