Dado un número ‘n’, cómo comprobar si n es un número de Fibonacci . Los primeros números de Fibonacci son 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ..
Ejemplos:
Input : 8 Output : Yes Input : 34 Output : Yes Input : 41 Output : No
C++
// C++ program to check if x is a perfect square #include <bits/stdc++.h> using namespace std; // A utility function that returns true if x is perfect // square bool isPerfectSquare(int x) { int s = sqrt(x); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false bool isFibonacci(int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions int main() { for (int i = 1; i <= 10; i++) isFibonacci(i) ? cout << i << " is a Fibonacci Number \n" : cout << i << " is a not Fibonacci Number \n"; return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804)
C
// C program to check if x is a perfect square #include <math.h> #include <stdbool.h> #include <stdio.h> // A utility function that returns true if x is perfect // square bool isPerfectSquare(int x) { int s = sqrt(x); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false bool isFibonacci(int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions int main() { for (int i = 1; i <= 10; i++) { if (isFibonacci(i)) printf("%d is a Fibonacci Number \n", i); else printf("%d is a not Fibonacci Number \n", i); } return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804)
Java
// Java program to check if x is a perfect square class GFG { // A utility method that returns true if x is perfect square static boolean isPerfectSquare(int x) { int s = (int) Math.sqrt(x); return (s*s == x); } // Returns true if n is a Fibonacci Number, else false static boolean isFibonacci(int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both // is a perfect square return isPerfectSquare(5*n*n + 4) || isPerfectSquare(5*n*n - 4); } // Driver method public static void main(String[] args) { for (int i = 1; i <= 10; i++) System.out.println(isFibonacci(i) ? i + " is a Fibonacci Number" : i + " is a not Fibonacci Number"); } } //This code is contributed by Nikita Tiwari
Python
# python program to check if x is a perfect square import math # A utility function that returns true if x is perfect square def isPerfectSquare(x): s = int(math.sqrt(x)) return s*s == x # Returns true if n is a Fibonacci Number, else false def isFibonacci(n): # n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both # is a perfect square return isPerfectSquare(5*n*n + 4) or isPerfectSquare(5*n*n - 4) # A utility function to test above functions for i in range(1,11): if (isFibonacci(i) == True): print i,"is a Fibonacci Number" else: print i,"is a not Fibonacci Number "
C#
// C# program to check if // x is a perfect square using System; class GFG { // A utility function that returns // true if x is perfect square static bool isPerfectSquare(int x) { int s = (int)Math.Sqrt(x); return (s * s == x); } // Returns true if n is a // Fibonacci Number, else false static bool isFibonacci(int n) { // n is Fibonacci if one of // 5*n*n + 4 or 5*n*n - 4 or // both are a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // Driver method public static void Main() { for (int i = 1; i <= 10; i++) Console.WriteLine(isFibonacci(i) ? i + " is a Fibonacci Number" : i + " is a not Fibonacci Number"); } } // This code is contributed by Sam007
PHP
<?php // PHP program to check if // x is a perfect square // A utility function that // returns true if x is // perfect square function isPerfectSquare($x) { $s = (int)(sqrt($x)); return ($s * $s == $x); } // Returns true if n is a // Fibonacci Number, else false function isFibonacci($n) { // n is Fibonacci if one of // 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * $n * $n + 4) || isPerfectSquare(5 * $n * $n - 4); } // Driver Code for ($i = 1; $i <= 10; $i++) if(isFibonacci($i)) echo "$i is a Fibonacci Number \n"; else echo "$i is a not Fibonacci Number \n" ; // This code is contributed by mits ?>
Javascript
<script> // javascript program to check if x is a perfect square // A utility function that returns true if x is perfect square function isPerfectSquare( x) { let s = parseInt(Math.sqrt(x)); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false function isFibonacci( n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both // is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions for (let i = 1; i <= 10; i++) isFibonacci(i)? document.write( i + " is a Fibonacci Number <br/>"): document.write(i + " is a not Fibonacci Number <br/>") ; // This code is contributed by Rajput-Ji </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA