Datos interesantes sobre los números de Fibonacci

Conocemos el número de Fibonacci , F n = F n-1 + F n-2. 
Los primeros números de Fibonacci son 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, …. . 
Aquí hay algunos datos interesantes sobre el número de Fibonacci: 

1. Patrón en los últimos dígitos de los números de Fibonacci: Los 
últimos dígitos de los primeros números de Fibonacci son: 

0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, ... 

La serie de últimos dígitos se repite con una longitud de ciclo de 60 (consulte esto para obtener explicaciones de este resultado). 

C++

// C++ program to demonstrate that sequence of last
// digits of Fibonacci numbers repeats after 60.
#include <bits/stdc++.h>
using namespace std;
 
#define max 100
 
int main()
{
    long long int arr[max];
    arr[0] = 0;
    arr[1] = 1;
    int i = 0;
 
    // storing Fibonacci numbers
    for (i = 2; i < max; i++) {
        arr[i] = arr[i - 1] + arr[i - 2];
    }
 
    // Traversing through store numbers
    for (i = 1; i < max - 1; i++) {
        // Since first two number are 0 and 1
        // so, if any two consecutive number encounter 0 and
        // 1 at their unit place, then it clearly means that
        // number is repeating/ since we just have to find
        // the sum of previous two number
        cout << i << endl;
        if ((arr[i] % 10 == 0) && (arr[i + 1] % 10 == 1)) {
            break;
        }
    }
    cout << "Sequence is repeating after index " << i
         << endl;
}

C

// C program to demonstrate that sequence of last
// digits of Fibonacci numbers repeats after 60.
#include <stdio.h>
#define max 100
 
int main()
{
    long long int arr[max];
    arr[0] = 0;
    arr[1] = 1;
    int i = 0;
 
    // storing Fibonacci numbers
    for (i = 2; i < max; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    // Traversing through store numbers
    for (i = 1; i < max - 1; i++)
    {
       
        // Since first two number are 0 and 1
        // so, if any two consecutive number encounter 0 and
        // 1 at their unit place, then it clearly means that
        // number is repeating/ since we just have to find
        // the sum of previous two number
        if ((arr[i] % 10 == 0) && (arr[i + 1] % 10 == 1))
            break;
    }
    printf("Sequence is repeating after index %d", i);
}
 
// The code is contributed by Gautam goel (gautamgoel962)

Java

// Java program to demonstrate that sequence of last
// digits of Fibonacci numbers repeats after 60.
 
class GFG{
static int max=100;
public static void main(String[] args)
{
    long[] arr=new long[max];
    arr[0] = 0;
    arr[1] = 1;
    int i=0;
 
    // storing Fibonacci numbers
    for (i = 2; i < max; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    // Traversing through store numbers
    for (i = 1; i < max - 1; i++)
    {
        // Since first two number are 0 and 1
        // so, if any two consecutive number encounter 0 and 1
        // at their unit place, then it clearly means that
        // number is repeating/ since we just have to find
        // the sum of previous two number
        if ((arr[i] % 10 == 0) && (arr[i+1] % 10 == 1))
            break;
    }
    System.out.println("Sequence is repeating after index "+i);
}
}
// This code is contributed by mits

Python3

# Python3 program to demonstrate that sequence of last
# digits of Fibonacci numbers repeats after 60.
 
 
if __name__=='__main__':
    max = 100
    arr = [0 for i in range(max)]
    arr[0] = 0
    arr[1] = 1
 
# storing Fibonacci numbers
    for i in range(2, max):
        arr[i] = arr[i - 1] + arr[i - 2]
 
    # Traversing through store numbers
    for i in range(1, max - 1):
         
 
    # Since first two number are 0 and 1
    # so, if any two consecutive number encounter 0 and 1
    # at their unit place, then it clearly means that
    # number is repeating/ since we just have to find
    # the sum of previous two number
        if((arr[i] % 10 == 0) and (arr[i + 1] % 10 == 1)):
            break
 
    print("Sequence is repeating after index", i)
 
# This code is contributed by
# Sanjit_Prasad

C#

// C# program to demonstrate that sequence of last
// digits of Fibonacci numbers repeats after 60.
 
class GFG{
static int max=100;
public static void Main()
{
    long[] arr=new long[max];
    arr[0] = 0;
    arr[1] = 1;
    int i=0;
 
    // storing Fibonacci numbers
    for (i = 2; i < max; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    // Traversing through store numbers
    for (i = 1; i < max - 1; i++)
    {
        // Since first two number are 0 and 1
        // so, if any two consecutive number encounter 0 and 1
        // at their unit place, then it clearly means that
        // number is repeating/ since we just have to find
        // the sum of previous two number
        if ((arr[i] % 10 == 0) && (arr[i+1] % 10 == 1))
            break;
    }
    System.Console.WriteLine("Sequence is repeating after index "+i);
}
}
// This code is contributed by mits

PHP

<?php
// php program to demonstrate that
// sequence of last digits of
// Fibonacci numbers repeats after
// 60. global $MAX=100
 
    $arr[0] = 0;
    $arr[1] = 1;
 
    // storing Fibonacci numbers
    for ($i = 2; $i < 100; $i++)
        $arr[$i] = $arr[$i-1] +
                       $arr[$i-2];
 
    // Traversing through store
    // numbers
    for ($i = 1; $i <100 - 1; $i++)
    {
        // Since first two number are
        // 0 and 1 so, if any two
        // consecutive number encounter
        // 0 and 1 at their unit place,
        // then it clearly means that
        // number is repeating/ since
        // we just have to find the
        // sum of previous two number
        if (($arr[$i] % 10 == 0) &&
                ($arr[$i+1] % 10 == 1))
            break;
    }
    echo "Sequence is repeating after",
                         " index ", $i;
 
// This code is contributed by ajit
?>

Javascript

<script>
 
// Javascript program to demonstrate that
// sequence of last digits of Fibonacci
// numbers repeats after 60.    
var max = 100;
 
var arr = Array(max).fill(0);
arr[0] = 0;
arr[1] = 1;
var i = 0;
 
// Storing Fibonacci numbers
for(i = 2; i < max; i++)
    arr[i] = arr[i - 1] + arr[i - 2];
 
// Traversing through store numbers
for(i = 1; i < max - 1; i++)
{
     
    // Since first two number are 0 and 1
    // so, if any two consecutive number encounter 0 and 1
    // at their unit place, then it clearly means that
    // number is repeating since we just have to find
    // the sum of previous two number
    if ((arr[i] % 10 == 0) && (arr[i + 1] % 10 == 1))
        break;
}
 
// Driver code
document.write("Sequence is repeating after index " + i);
 
// This code is contributed by gauravrajput1
 
</script>

Producción: 

Sequence is repeating after index 60

2. Factores del número de Fibonacci: en una observación cuidadosa, podemos observar lo siguiente:

  • Cada tercer número de Fibonacci es un múltiplo de 2
  • Cada 4-ésimo número de Fibonacci es un múltiplo de 3
  • Cada quinto número de Fibonacci es un múltiplo de 5
  • Cada sexto número de Fibonacci es un múltiplo de 8

Consulte esto para más detalles. 

C++

// C++ program to demonstrate divisibility of Fibonacci
// numbers.
#include<iostream>
using namespace std;
#define MAX 90
 
int main()
{
    // indexes variable stores index of number that
    // is divisible by 2, 3, 5 and 8
    long long int arr[MAX], index1[MAX], index2[MAX];
    long long int index3[MAX], index4[MAX];
 
    // storing fibonacci numbers
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    // c1 keeps track of number of index of number
    // divisible by 2 and others c2, c3 and c4 for
    // 3, 5 and 8
    int c1 = 0, c2 = 0, c3 = 0, c4 = 0;
 
    // separating fibonacci number into their
    // respective array
    for (int i = 0; i < MAX; i++)
    {
        if (arr[i] % 2 == 0)
            index1[c1++] = i;
        if (arr[i] % 3 == 0)
            index2[c2++] = i;
        if (arr[i] % 5 == 0)
            index3[c3++] = i;
        if (arr[i] % 8 == 0)
            index4[c4++] = i;
    }
 
    // printing index arrays
    cout<<"Index of Fibonacci numbers divisible by"
           " 2 are :\n";
    for (int i = 0; i < c1; i++)
        cout<<" "<< index1[i];
    cout<<"\n";
 
    cout<<"Index of Fibonacci number divisible by"
           " 3 are :\n";
    for (int i = 0; i < c2; i++)
        cout<<"  "<< index2[i];
    cout<<"\n";
 
    cout<<"Index of Fibonacci number divisible by"
           " 5 are :\n";
    for (int i = 0; i < c3; i++)
        cout<<"  "<< index3[i];
    cout<<"\n";
 
    cout<<"Index of Fibonacci number divisible by"
           " 8 are :\n";
    for (int i = 0; i < c4; i++)
        cout<<" "<<index4[i];
    cout<<"\n";
}
 
// This code is contributed by shivanisinghss2110

C

// C program to demonstrate divisibility of Fibonacci
// numbers.
#include<stdio.h>
#define MAX 90
 
int main()
{
    // indexes variable stores index of number that
    // is divisible by 2, 3, 5 and 8
    long long int arr[MAX], index1[MAX], index2[MAX];
    long long int index3[MAX], index4[MAX];
 
    // storing fibonacci numbers
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    // c1 keeps track of number of index of number
    // divisible by 2 and others c2, c3 and c4 for
    // 3, 5 and 8
    int c1 = 0, c2 = 0, c3 = 0, c4 = 0;
 
    // separating fibonacci number into their
    // respective array
    for (int i = 0; i < MAX; i++)
    {
        if (arr[i] % 2 == 0)
            index1[c1++] = i;
        if (arr[i] % 3 == 0)
            index2[c2++] = i;
        if (arr[i] % 5 == 0)
            index3[c3++] = i;
        if (arr[i] % 8 == 0)
            index4[c4++] = i;
    }
 
    // printing index arrays
    printf("Index of Fibonacci numbers divisible by"
           " 2 are :\n");
    for (int i = 0; i < c1; i++)
        printf("%d  ", index1[i]);
    printf("\n");
 
    printf("Index of Fibonacci number divisible by"
           " 3 are :\n");
    for (int i = 0; i < c2; i++)
        printf("%d  ", index2[i]);
    printf("\n");
 
    printf("Index of Fibonacci number divisible by"
           " 5 are :\n");
    for (int i = 0; i < c3; i++)
        printf("%d  ", index3[i]);
    printf("\n");
 
    printf("Index of Fibonacci number divisible by"
           " 8 are :\n");
    for (int i = 0; i < c4; i++)
        printf("%d  ", index4[i]);
    printf("\n");
}

Java

// Java program to demonstrate divisibility of Fibonacci
// numbers.
 
class GFG
{
static int MAX=90;
 
// Driver code
public static void main(String[] args)
{
    // indexes variable stores index of number that
    // is divisible by 2, 3, 5 and 8
    long[] arr=new long[MAX];
    long[] index1=new long[MAX];
    long[] index2=new long[MAX];
    long[] index3=new long[MAX];
    long[] index4=new long[MAX];
 
    // storing fibonacci numbers
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    // c1 keeps track of number of index of number
    // divisible by 2 and others c2, c3 and c4 for
    // 3, 5 and 8
    int c1 = 0, c2 = 0, c3 = 0, c4 = 0;
 
    // separating fibonacci number into their
    // respective array
    for (int i = 0; i < MAX; i++)
    {
        if (arr[i] % 2 == 0)
            index1[c1++] = i;
        if (arr[i] % 3 == 0)
            index2[c2++] = i;
        if (arr[i] % 5 == 0)
            index3[c3++] = i;
        if (arr[i] % 8 == 0)
            index4[c4++] = i;
    }
 
    // printing index arrays
    System.out.print("Index of Fibonacci numbers divisible by" +
        " 2 are :\n");
    for (int i = 0; i < c1; i++)
        System.out.print(index1[i] + " ");
    System.out.print("\n");
 
    System.out.print("Index of Fibonacci number divisible by" +
        " 3 are :\n");
    for (int i = 0; i < c2; i++)
        System.out.print(index2[i] + " ");
    System.out.print("\n");
 
    System.out.print("Index of Fibonacci number divisible by" +
        " 5 are :\n");
    for (int i = 0; i < c3; i++)
        System.out.print(index3[i] + " ");
    System.out.print("\n");
 
    System.out.print("Index of Fibonacci number divisible by" +
        " 8 are :\n");
    for (int i = 0; i < c4; i++)
        System.out.print(index4[i] + " ");
    System.out.print("\n");
}
}
 
// This code is contributed by mits

Python3

# Python3 program to demonstrate divisibility
# of Fibonacci numbers.
MAX = 90;
 
# indexes variable stores index of number
# that is divisible by 2, 3, 5 and 8
arr = [0] * (MAX);
index1 = [0] * (MAX);
index2 = [0] * (MAX);
index3 = [0] * (MAX);
index4 = [0] * (MAX);
 
# storing fibonacci numbers
arr[0] = 0;
arr[1] = 1;
for i in range(2, MAX):
    arr[i] = arr[i - 1] + arr[i - 2];
 
# c1 keeps track of number of index
# of number divisible by 2 and others 
# c2, c3 and c4 for 3, 5 and 8
c1, c2, c3, c4 = 0, 0, 0, 0;
 
# separating fibonacci number into
# their respective array
for i in range(MAX):
    if (arr[i] % 2 == 0):
        index1[c1] = i;
        c1 += 1;
    if (arr[i] % 3 == 0):
        index2[c2] = i;
        c2 += 1;
    if (arr[i] % 5 == 0):
        index3[c3] = i;
        c3 += 1;
    if (arr[i] % 8 == 0):
        index4[c4] = i;
        c4 += 1;
 
# printing index arrays
print("Index of Fibonacci numbers",
           "divisible by 2 are :");
for i in range(c1):
    print(index1[i], end = " ");
print("");
 
print("Index of Fibonacci number",
          "divisible by 3 are :");
for i in range(c2):
    print(index2[i], end = " ");
print("");
 
print("Index of Fibonacci number",
          "divisible by 5 are :");
for i in range(c3):
    print(index3[i], end = " ");
print("");
 
print("Index of Fibonacci number",
          "divisible by 8 are :");
for i in range(c4):
    print(index4[i], end = " ");
print("");
 
# This code is contributed by mits

C#

// C# program to demonstrate divisibility
// of Fibonacci numbers.
 
class GFG{
static int MAX = 90;
 
static void Main()
{
    // indexes variable stores index of number that
    // is divisible by 2, 3, 5 and 8
    long[] arr = new long[MAX];
    long[] index1 = new long[MAX];
    long[] index2 = new long[MAX];
    long[] index3 = new long[MAX];
    long[] index4 = new long[MAX];
 
    // storing fibonacci numbers
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    // c1 keeps track of number of index of number
    // divisible by 2 and others c2, c3 and c4 for
    // 3, 5 and 8
    int c1 = 0, c2 = 0, c3 = 0, c4 = 0;
 
    // separating fibonacci number into their
    // respective array
    for (int i = 0; i < MAX; i++)
    {
        if (arr[i] % 2 == 0)
            index1[c1++] = i;
        if (arr[i] % 3 == 0)
            index2[c2++] = i;
        if (arr[i] % 5 == 0)
            index3[c3++] = i;
        if (arr[i] % 8 == 0)
            index4[c4++] = i;
    }
 
    // printing index arrays
    System.Console.Write("Index of Fibonacci numbers" +
                    "divisible by 2 are :\n");
    for (int i = 0; i < c1; i++)
        System.Console.Write(index1[i]+" ");
    System.Console.Write("\n");
 
    System.Console.Write("Index of Fibonacci number "+
                        " divisible by 3 are :\n");
    for (int i = 0; i < c2; i++)
        System.Console.Write(index2[i]+" ");
    System.Console.Write("\n");
 
    System.Console.Write("Index of Fibonacci number "+
        "divisible by 5 are :\n");
    for (int i = 0; i < c3; i++)
        System.Console.Write(index3[i]+" ");
    System.Console.Write("\n");
 
    System.Console.Write("Index of Fibonacci number "+
        "divisible by 8 are :\n");
    for (int i = 0; i < c4; i++)
        System.Console.Write(index4[i]+" ");
    System.Console.Write("\n");
}
}
 
// This code is contributed by mits

PHP

<?php
// PHP program to demonstrate divisibility
// of Fibonacci numbers.
$MAX = 90;
 
// indexes variable stores index of number
// that is divisible by 2, 3, 5 and 8
$arr = array($MAX);
$index1 = array($MAX);
$index2 = array($MAX);
$index3 = array($MAX);
$index4 = array($MAX);
 
// storing fibonacci numbers
$arr[0] = 0;
$arr[1] = 1;
for ($i = 2; $i < $MAX; $i++)
{
    $arr[$i] = $arr[$i - 1] + $arr[$i - 2];
}
 
// c1 keeps track of number of index of
// number divisible by 2 and others
// c2, c3 and c4 for 3, 5 and 8
$c1 = 0;
$c2 = 0;
$c3 = 0;
$c4 = 0;
 
// separating fibonacci number into
// their respective array
for ($i = 0; $i < $MAX; $i++)
{
    if ($arr[$i] % 2 == 0)
        $index1[$c1++] = $i;
    if ($arr[$i] % 3 == 0)
        $index2[$c2++] = $i;
    if ($arr[$i] % 5 == 0)
        $index3[$c3++] = $i;
    if ($arr[$i] % 8 == 0)
        $index4[$c4++] = $i;
}
 
// printing index arrays
echo "Index of Fibonacci numbers divisible by" .
                                " 2 are :\n";
for ($i = 0; $i < $c1; $i++)
    echo $index1[$i] . " ";
echo "\n";
 
echo "Index of Fibonacci number divisible by" .
                                " 3 are :\n";
for ($i = 0; $i < $c2; $i++)
    echo $index2[$i] . " ";
echo "\n";
 
echo "Index of Fibonacci number divisible by" .
    " 5 are :\n";
for ($i = 0; $i < $c3; $i++)
    echo $index3[$i] . " ";
echo "\n";
 
echo "Index of Fibonacci number divisible by" .
    " 8 are :\n";
for ($i = 0; $i < $c4; $i++)
    echo $index4[$i] . " ";
echo "\n";
 
// This code is contributed by mits
?>

Javascript

// JavaScript program to demonstrate divisibility of Fibonacci
// numbers.
 
var MAX=90;
 
// Driver code
 
    // indexes variable stores index of number that
    // is divisible by 2, 3, 5 and 8
    var arr=new Array(MAX);
    var index1= new Array(MAX);
    var index2= new Array(MAX);
    var index3= new Array(MAX);
    var index4= new Array(MAX);
 
    // storing fibonacci numbers
    arr[0] = 0;
    arr[1] = 1;
    for (var i = 2; i < MAX; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    // c1 keeps track of number of index of number
    // divisible by 2 and others c2, c3 and c4 for
    // 3, 5 and 8
    var c1 = 0, c2 = 0, c3 = 0, c4 = 0;
 
    // separating fibonacci number into their
    // respective array
    for (var i = 0; i < MAX; i++)
    {
        if (arr[i] % 2 == 0)
            index1[c1++] = i;
        if (arr[i] % 3 == 0)
            index2[c2++] = i;
        if (arr[i] % 5 == 0)
            index3[c3++] = i;
        if (arr[i] % 8 == 0)
            index4[c4++] = i;
    }
 
    // printing index arrays
    document.write("Index of Fibonacci numbers divisible by" +
        " 2 are :\n");
    for (var i = 0; i < c1; i++)
        document.write(index1[i] + " ");
    document.write("\n");
 
    document.write("Index of Fibonacci number divisible by" +
        " 3 are :\n");
    for (var i = 0; i < c2; i++)
        document.write(index2[i] + " ");
    document.write("\n");
 
    document.write("Index of Fibonacci number divisible by" +
        " 5 are :\n");
    for (var i = 0; i < c3; i++)
        document.write(index3[i] + " ");
    document.write("\n");
 
    document.write("Index of Fibonacci number divisible by" +
        " 8 are :\n");
    for (var i = 0; i < c4; i++)
        document.write(index4[i] + " ");
    document.write("\n");
 
 
 
// This code is contributed by shivanisinghss2110

Producción: 

Index of Fibonacci numbers divisible by 2 are :
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 
48 51 54 57 60 63 66 69 72 75 78 81 84 87 
Index of Fibonacci number divisible by 3 are :
0 4 8 12 16 20 24 28 32 36 40 44 48 52 
56 60 64 68 72 76 80 84 88 
Index of Fibonacci number divisible by 5 are :
0 5 10 15 20 25 30 35 40 45 50 
55 60 65 70 75 80 85 
Index of Fibonacci number divisible by 8 are :
0 6 12 18 24 30 36 42 48
54 60 66 72 78 84 

3. Número de Fibonacci con factor de número índice: Tenemos un número de Fibonacci como F(1) = 1 que es divisible por 1, F(5) = 5 que es divisible por 5, F(12) = 144 que es divisible por 12 , F(24) = 46368 que es divisible por 24, F(25) = 75025 que es divisible por 25. Este tipo de número índice sigue un cierto patrón. Primero, echemos un vistazo a esos números de índice: 
1, 5, 12, 24, 25, 36, 48, 60, 72, 84, 96, 108, 120, 125, 132, ….. 

Al observarla, esta serie está formada por todo número que sea múltiplo de 12 así como por todo número que cumpla la condición de pow(5, k), donde k = 0, 1, 2, 3, 4, 5, 6, 7, …….

C++

// C++ program to demonstrate that Fibonacci numbers
// that are divisible by their indexes have indexes
// as either power of 5 or multiple of 12.
#include<iostream>
using namespace std;
#define MAX 100
 
int main()
{
   
    // storing Fibonacci numbers
    long long int arr[MAX];
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    cout<<"Fibonacci numbers divisible by "
          "their indexes are :\n";
    for (int i = 1; i < MAX; i++)
        if (arr[i] % i == 0)
            cout<<"  "<< i;
}
 
// This code is contributed by shivanisinghss2110

C

// C program to demonstrate that Fibonacci numbers
// that are divisible by their indexes have indexes
// as either power of 5 or multiple of 12.
#include<stdio.h>
#define MAX 100
 
int main()
{
    // storing Fibonacci numbers
    long long int arr[MAX];
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i-1] + arr[i-2];
 
    printf("Fibonacci numbers divisible by "
          "their indexes are :\n");
    for (int i = 1; i < MAX; i++)
        if (arr[i] % i == 0)
            printf("%d  ", i);
}

Java

// Java program to demonstrate that Fibonacci numbers
// that are divisible by their indexes have indexes
// as either power of 5 or multiple of 12.
 
class GFG
{
 
static int MAX = 100;
 
public static void main(String[] args)
{
    // storing Fibonacci numbers
    long[] arr = new long[MAX];
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    System.out.print("Fibonacci numbers divisible by "+
        "their indexes are :\n");
    for (int i = 1; i < MAX; i++)
        if (arr[i] % i == 0)
            System.out.print(i + " ");
}
}
 
// This code is contributed by mits

Python3

# Python3 program to demonstrate that Fibonacci numbers
# that are divisible by their indexes have indexes
# as either power of 5 or multiple of 12.
 
if __name__=='__main__':
    MAX = 100
# storing Fibonacci numbers
    arr = [0 for i in range(MAX)]
    arr[0] = 0
    arr[1] = 1
    for i in range(2, MAX):
        arr[i] = arr[i - 1] + arr[i - 2]
 
    print("Fibonacci numbers divisible by their indexes are :")
    for i in range(1, MAX):
        if(arr[i] % i == 0):
            print(i,end=" ")
 
# This code is contributed by
# Sanjit_Prasad

C#

// C# program to demonstrate that Fibonacci
// numbers that are divisible by their
// indexes have indexes as either power of 5
// or multiple of 12.
using System;
 
class GFG
{
static int MAX = 100;
static void Main()
{
    // storing Fibonacci numbers
    long[] arr = new long[MAX];
    arr[0] = 0;
    arr[1] = 1;
    for (int i = 2; i < MAX; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    Console.Write("Fibonacci numbers divisible by " +
                           "their indexes are :\n");
    for (int i = 1; i < MAX; i++)
        if (arr[i] % i == 0)
            System.Console.Write(i+" ");
}
}
 
// This code is contributed by mits

Javascript

// JavaScript program to demonstrate that Fibonacci numbers
// that are divisible by their indexes have indexes
// as either power of 5 or multiple of 12.
 
var MAX = 100;
  
    // storing Fibonacci numbers
    var arr = new Array(MAX);
    arr[0] = 0;
    arr[1] = 1;
    for (var i = 2; i < MAX; i++)
        arr[i] = arr[i - 1] + arr[i - 2];
 
    document.write("Fibonacci numbers divisible by their indexes are :");
    for (var i = 1; i < MAX; i++)
        if (arr[i] % i == 0)
            document.write(i + " ");
 
 
// This code is contributed by shivanisinghss2110

Producción: 

Fibonacci numbers divisible by their indexes are :
1  5  12  24  25  36  48  60  72  96

4. El valor de f(n-1)*f(n+1) – f(n)*f(n) es (-1) n . Consulte la Identidad de Cassini para obtener más detalles.

Referencia:  
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibmaths.html
Este artículo es una contribución de Aditya Kumar . Si le gusta GeeksforGeeks y le gustaría contribuir, también puede escribir un artículo usando contribuya.geeksforgeeks.org o envíe su artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *