Encuentra la ecuación cuadrática a partir de las raíces dadas

Dadas las raíces de una ecuación cuadrática A y B , la tarea es encontrar la ecuación.
Nota : Las raíces dadas son integrales.

Ejemplos: 

Entrada: A = 2, B = 3 
Salida: x^2 – (5x) + (6) = 0 
x 2 – 5x + 6 = 0 
x 2 -3x -2x + 6 = 0 
x(x – 3) – 2 (x-3) = 0 
(x-3) (x-2) = 0 
x = 2, 3

Entrada: A = 5, B = 10 
Salida: x^2 – (15x) + (50) = 0 

Planteamiento: Si las raíces de una ecuación cuadrática ax 2 + bx + c = 0 son A y B entonces se sabe que 
A + B = – b/a y A * B = c * a
Ahora, ax 2 + bx + c = 0 se puede escribir como 
x 2 + (b / a)x + (c / a) = 0 (Ya que, a != 0) 
x 2 – (A + B)x + ( A * B) = 0, [Ya que, A + B = -b * a y A * B = c * a] 
es decir , x 2 – (Suma de las raíces)x + Producto de las raíces = 0

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the quadratic
// equation whose roots are a and b
void findEquation(int a, int b)
{
    int sum = (a + b);
    int product = (a * b);
    cout << "x^2 - (" << sum << "x) + ("
         << product << ") = 0";
}
 
// Driver code
int main()
{
    int a = 2, b = 3;
 
    findEquation(a, b);
 
    return 0;
}

Java

// Java implementation of the above approach
class GFG
{
     
    // Function to find the quadratic
    // equation whose roots are a and b
    static void findEquation(int a, int b)
    {
        int sum = (a + b);
        int product = (a * b);
        System.out.println("x^2 - (" + sum +
                           "x) + (" + product + ") = 0");
    }
     
    // Driver code
    public static void main(String args[])
    {
        int a = 2, b = 3;
     
        findEquation(a, b);
    }
}
 
// This code is contributed by AnkitRai01

Python3

# Python3 implementation of the approach
 
# Function to find the quadratic
# equation whose roots are a and b
def findEquation(a, b):
    summ = (a + b)
    product = (a * b)
    print("x^2 - (", summ,
          "x) + (", product, ") = 0")
 
# Driver code
a = 2
b = 3
 
findEquation(a, b)
 
# This code is contributed by Mohit Kumar

C#

// C# implementation of the above approach
using System;
class GFG
{
     
    // Function to find the quadratic
    // equation whose roots are a and b
    static void findEquation(int a, int b)
    {
        int sum = (a + b);
        int product = (a * b);
        Console.WriteLine("x^2 - (" + sum +
                          "x) + (" + product + ") = 0");
    }
     
    // Driver code
    public static void Main()
    {
        int a = 2, b = 3;
     
        findEquation(a, b);
    }
}
 
// This code is contributed by CodeMech.

Javascript

<script>
 
// Javascript implementation of the above approach
 
// Function to find the quadratic
// equation whose roots are a and b
function findEquation(a, b)
{
    var sum = (a + b);
    var product = (a * b);
    document.write("x^2 - (" + sum +
                    "x) + (" + product +
                    ") = 0");
}
 
// Driver Code
var a = 2, b = 3;
 
findEquation(a, b);
 
// This code is contributed by Ankita saini
     
</script>
Producción: 

x^2 - (5x) + (6) = 0

 

Complejidad de tiempo: O(1)

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por gp6 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *