Aquí vamos a encontrar la suma de la serie 1 + 11 + 111 + 1111 +…..hasta N términos (donde se da N).
Ejemplo :
Input : 3 Output : 1 + 11 + 111 +.... Total sum is : 123 Input : 4 Output : 1 + 11 + 111 + 1111 +..... Total sum is : 1234 Input : 7 Output : 1 + 11 + 111 + 1111 + 11111 + 111111 + 1111111 +..... Total sum is : 1234567
Aquí vemos que cuando el valor de N es 3, la serie dura hasta 1 + 11 + 111, es decir, tres términos y su suma es 123.
Programa para encontrar la suma de la serie anterior:
C++
// C++ program to find the sum of // the series 1+11+111+1111+.... #include <bits/stdc++.h> using namespace std; // Function for finding summation int summation(int n) { int sum = 0, j = 1; for (int i = 1; i <= n; i++) { sum = sum + j; // Appending a 1 at the end j = (j * 10) + 1; } return sum; } // Driver Code int main() { int n = 5; cout << " " << summation(n); return 0; } // This code is contributed by shivanisinghss2110
C
// C program to find the sum of // the series 1+11+111+1111+.... #include <stdio.h> // Function for finding summation int summation(int n) { int sum = 0, j = 1; for (int i = 1; i <= n; i++) { sum = sum + j; // Appending a 1 at the end j = (j * 10) + 1; } return sum; } // Driver Code int main() { int n = 5; printf("%d", summation(n)); return 0; }
Java
// Java program to find the sum of // the series 1+11+111+1111+.... import java.io.*; class GFG { // Function for finding summation static int summation(int n) { int sum = 0, j = 1; for (int i = 1; i <= n; i++) { sum = sum + j; j = (j * 10) + 1; } return sum; } // Driver Code public static void main(String args[]) { int n = 5; System.out.println(summation(n)); } } // This code is contributed // by Nikita Tiwari
Python
# Python program to get the summation # of following series def summation(n): sum = 0 j = 1 for i in range(1, n + 1): sum = sum + j j = (j * 10) + 1 return sum # Driver Code n = 5 print(summation(n))
C#
// C# program to find the sum of // the series 1+11+111+1111+.... using System; class GFG { // Function for finding summation static int summation(int n) { int sum = 0, j = 1; for (int i = 1; i <= n; i++) { sum = sum + j; j = (j * 10) + 1; } return sum; } // Driver Code public static void Main() { int n = 5; Console.WriteLine(summation(n)); } } // This code is contributed by vt_m
PHP
<?php // PHP program to find the sum of // the series 1+11+111+1111+.... // Function for finding summation function summation($n) { $sum = 0; $j = 1; for ($i = 1; $i <= $n; $i++) { $sum = $sum + $j; // Appending a 1 at the end $j = ($j * 10) + 1; } return $sum; } // Driver Code $n = 5; echo summation($n); // This code is contributed by ajit ?>
Javascript
<script> // Javascript program to find the sum of // the series 1+11+111+1111+.... // Function for finding summation function summation( n) { let sum = 0, j = 1; for ( let i = 1; i <= n; i++) { sum = sum + j; // Appending a 1 at the end j = (j * 10) + 1; } return sum; } // Driver Code let n = 5; document.write(summation(n)); // This code contributed by Princi Singh </script>
Producción :
12345
Complejidad de tiempo: O(n), donde n representa el entero dado.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.
Otro método: Sea dada una serie S = 1 + 11 + 111 + 1111 + . . . + hasta el término n. Usando la fórmula para encontrar la suma de la serie.
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program to find the sum of // the series 1+11+111+1111+.... #include <bits/stdc++.h> // Function for finding summation int summation(int n) { int sum; sum = (pow(10, n + 1) - 10 - (9 * n)) / 81; return sum; } // Driver Code int main() { int n = 5; printf("%d", summation(n)); return 0; }
Java
// java program to find the sum of // the series 1+11+111+1111+.... import java.io.*; class GFG { // Function for finding summation static int summation(int n) { int sum; sum = (int)(Math.pow(10, n + 1) - 10 - (9 * n)) / 81; return sum; } // Driver Code public static void main (String[] args) { int n = 5; System.out.println(summation(n)); } } // This code is contributed by anuj_67.
Python3
# Python3 program to # find the sum of # the series 1+11+111+1111+.... import math # Function for # finding summation def summation(n): return int((pow(10, n + 1) - 10 - (9 * n)) / 81); # Driver Code print(summation(5)); # This code is contributed # by mits.
C#
// C# program to find the sum of // the series 1+11+111+1111+.... using System; class GFG { // Function for finding summation static int summation(int n) { int sum; sum = (int)(Math.Pow(10, n + 1) - 10 - (9 * n)) / 81; return sum; } // Driver Code public static void Main () { int n = 5; Console.WriteLine(summation(n)); } } // This code is contributed by anuj_67.
PHP
<?php //PHP program to find the sum of // the series 1+11+111+1111+.... // Function for finding summation function summation($n) { $sum; $sum = (pow(10, $n + 1) - 10 - (9 * $n)) / 81; return $sum; } // Driver Code $n = 5; echo summation($n); // This code is contributed by aj_36 ?>
Javascript
<script> // javascript program to find the sum of // the series 1+11+111+1111+.... // Function for finding summation function summation( n) { let sum; sum = (Math.pow(10, n + 1) - 10 - (9 * n)) / 81; return sum; } // Driver Code let n = 5; document.write(summation(n)) ; // This code is contributed by aashish1995 </script>
Producción :
12345
Complejidad de tiempo: O(logn), donde n representa el entero dado.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.
Publicación traducida automáticamente
Artículo escrito por Kanchan_Ray y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA