Dado un número n, la tarea es encontrar la suma de los primeros n términos de esta serie. A continuación se muestra la serie:
Ejemplos:
Input: n = 10 Output: 95.2628 Input: n = 5 Output: 25.9808
Esta serie puede ser vista como-
A continuación se muestra la implementación requerida:
C++
// C++ implementation of above approach #include <bits/stdc++.h> #define ll long long int using namespace std; // Function to find the sum double findSum(ll n) { // Apply AP formula return sqrt(3) * (n * (n + 1) / 2); } // Driver code int main() { // number of terms ll n = 10; cout << findSum(n) << endl; return 0; }
Java
// Java implementation of // above approach import java.io.*; class GFG { // Function to find the sum static double findSum(long n) { // Apply AP formula return Math.sqrt(3) * (n * (n + 1) / 2); } // Driver code public static void main (String[] args) { // number of terms long n = 10; System.out.println( findSum(n)); } } // This code is contributed // by inder_verma..
Python3
# Python3 implementation of above approach #Function to find the sum import math def findSum(n): # Apply AP formula return math.sqrt(3) * (n * (n + 1) / 2) # Driver code # number of terms if __name__=='__main__': n = 10 print(findSum(n)) # This code is contributed by sahilshelangia
C#
// C# implementation of // above approach using System; class GFG { // Function to find the sum static double findSum(long n) { // Apply AP formula return Math.Sqrt(3) * (n * (n + 1) / 2); } // Driver code public static void Main () { // number of terms long n = 10; Console.WriteLine( findSum(n)); } } // This code is contributed // by inder_verma..
PHP
<?php // PHP implementation of above approach // Function to find the sum function findSum($n) { // Apply AP formula return sqrt(3) * ($n * ($n + 1) / 2); } // Driver code // number of terms $n = 10; echo findSum($n); // This code is contributed // by inder_verma ?>
Javascript
<script> // Javascript implementation of // above approach // Function to find the sum function findSum( n) { // Apply AP formula return Math.sqrt(3) * (n * (n + 1) / 2); } // Driver code // number of terms let n = 10; document.write(findSum(n).toFixed(4)); // This code is contributed by 29AjayKumar </script>
Producción:
95.2628
Complejidad temporal: O(1) desde que se realizan operaciones constantes
Espacio auxiliar: O(1) para espacio constante para variables
Publicación traducida automáticamente
Artículo escrito por sahilshelangia y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA