Dados los dos primeros números de una serie. La tarea es encontrar el número N-ésimo (N puede ser hasta 10^18) de esa serie.
Nota: Cada elemento en la array es dos menos que la media del número anterior y posterior. La respuesta puede ser muy grande, así que imprima la respuesta en el módulo 10^9+9.
Ejemplos :
Input: N = 3 Output: 15 (1 + 15)/2 - 2 = 6 Input: N = 4 Output: 28 (6 + 28)/2 - 2 = 15
Observación: Según el enunciado, la serie formada será 1, 6, 15, 28, 45….. Entonces, la fórmula para el N-ésimo término será:
2*n*n - n
C++
// CPP program to find Nth term of the series #include <bits/stdc++.h> using namespace std; #define mod 1000000009 // function to return nth term of the series int NthTerm(long long n) { long long x = (2 * n * n) % mod; return (x - n + mod) % mod; } // Driver code int main() { long long N = 4; // function call cout << NthTerm(N); return 0; }
C
// C program to find Nth term of the series #include <stdio.h> #define mod 1000000009 // function to return nth term of the series int NthTerm(long long n) { long long x = (2 * n * n) % mod; return (x - n + mod) % mod; } // Driver code int main() { long long N = 4; // function call printf("%d",NthTerm(N)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find N-th // term of the series: import java.util.*; import java.lang.*; import java.io.*; class GFG { // function to return nth term of the series static long NthTerm(long n) { long x = (2 * n * n) % 1000000009; return (x - n + 1000000009) % 1000000009; } // Driver Code public static void main(String args[]) { // Taking n as 6 long N = 4; // Printing the nth term System.out.println(NthTerm(N)); } }
Python
# Python 3 program to find # N-th term of the series: # Function for calculating # Nth term of series def NthTerm(N) : # return nth term x = (2 * N*N)% 1000000009 return ((x - N + 1000000009)% 1000000009) # Driver code if __name__ == "__main__" : N = 4 # Function Calling print(NthTerm(N))
C#
// C# program to find N-th // term of the series: using System; class GFG { // function to return nth // term of the series static long NthTerm(long n) { long x = (2 * n * n) % 1000000009; return (x - n + 1000000009) % 1000000009; } // Driver Code public static void Main() { // Taking n as 6 long N = 4; // Printing the nth term Console.WriteLine(NthTerm(N)); } } // This code is contributed // by inder_verma
PHP
<?php // PHP program to find Nth // term of the series $mod = 1000000009; // function to return nth // term of the series function NthTerm($n) { global $mod; $x = (2 * $n * $n) % $mod; return ($x - $n + $mod) % $mod; } // Driver code $N = 4; // function call echo NthTerm($N); // This code is contributed // by inder_verma ?>
Javascript
<script> // Javascript program to find N-th // term of the series: // function to return nth term of the series function NthTerm(n) { var x = (2 * n * n) % 1000000009; return (x - n + 1000000009) % 1000000009; } // Driver Code // Taking n as 6 var N = 4; // Printing the nth term document.write(NthTerm(N)); // This code contributed by gauravrajput1 </script>
Producción:
28
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA