Encuentre la longitud del subconjunto más grande de modo que todos los elementos sean coprimos por pares

Dada una array A de tamaño N, nuestra tarea es encontrar la longitud del subconjunto más grande de modo que todos los elementos del subconjunto sean coprimos por pares , es decir, para dos elementos x e y donde x e y no son iguales, el mcd ( x, y) es igual a 1 .
Nota: Todos los elementos de la array son <= 50.

Ejemplos:

Entrada: A = [2, 5, 2, 5, 2] 
Salida:
Explicación: 
El subconjunto más grande que satisface la condición es: {2, 5} 

Entrada: A = [2, 3, 13, 5, 14, 6, 7, 11] 
Salida:

Enfoque ingenuo:
para resolver el problema mencionado anteriormente, debemos generar todos los subconjuntos y, para cada subconjunto, verificar si la condición dada se cumple o no. Pero este método requiere un tiempo O(N 2 * 2 N ) y se puede optimizar aún más.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation to Find the length of the Largest
// subset such that all elements are Pairwise Coprime
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the largest subset possible
int largestSubset(int a[], int n)
{
    int answer = 0;
 
    // Iterate through all the subsets
    for (int i = 1; i < (1 << n); i++) {
        vector<int> subset;
 
        /* Check if jth bit in the counter is set */
        for (int j = 0; j < n; j++) {
            if (i & (1 << j))
                subset.push_back(a[j]);
        }
 
        bool flag = true;
 
        for (int j = 0; j < subset.size(); j++) {
            for (int k = j + 1; k < subset.size(); k++) {
                // Check if the gcd is not equal to 1
                if (__gcd(subset[j], subset[k]) != 1)
                    flag = false;
            }
        }
 
        if (flag == true)
            // Update the answer with maximum value
            answer = max(answer, (int)subset.size());
    }
 
    // Return the final result
    return answer;
}
 
// Driver code
int main()
{
 
    int A[] = { 2, 3, 13, 5, 14, 6, 7, 11 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    cout << largestSubset(A, N);
 
    return 0;
}

Java

// Java implementation to find the length
// of the largest subset such that all
// elements are Pairwise Coprime
import java.util.*;
 
class GFG{
     
static int gcd(int a, int b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // Base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
         
    return gcd(a, b - a);
}
 
// Function to find the largest subset possible
static int largestSubset(int a[], int n)
{
    int answer = 0;
     
    // Iterate through all the subsets
    for(int i = 1; i < (1 << n); i++)
    {
        Vector<Integer> subset = new Vector<Integer>();
     
        // Check if jth bit in the counter is set
        for(int j = 0; j < n; j++)
        {
            if ((i & (1 << j)) != 0)
                subset.add(a[j]);
        }
     
        boolean flag = true;
     
        for(int j = 0; j < subset.size(); j++)
        {
            for(int k = j + 1; k < subset.size(); k++)
            {
                 
                // Check if the gcd is not equal to 1
                if (gcd((int)subset.get(j),
                       (int) subset.get(k)) != 1)
                    flag = false;
            }
        }
     
        if (flag == true)
         
            // Update the answer with maximum value
            answer = Math.max(answer,
                             (int)subset.size());
    }
     
    // Return the final result
    return answer;
}
 
// Driver code
public static void main(String args[])
{
    int A[] = { 2, 3, 13, 5, 14, 6, 7, 11 };
     
    int N = A.length;
     
    System.out.println(largestSubset(A, N));
}
}
 
// This code is contributed by Stream_Cipher

Python3

# Python3 implementation to Find
# the length of the Largest subset
# such that all elements are Pairwise Coprime
import math
 
# Function to find the largest subset possible
def largestSubset(a, n):
    answer = 0
 
    # Iterate through all the subsets
    for i in range(1, (1 << n)):
        subset = []
 
        # Check if jth bit in the counter is set
        for j in range(0, n):
            if (i & (1 << j)):
                subset.insert(j, a[j])
 
        flag = True
 
        for j in range(0, len(subset)):
            for k in range(j + 1, len(subset)):
                 
                # Check if the gcd is not equal to 1
                if (math.gcd(subset[j], subset[k]) != 1) :
                    flag = False
 
        if (flag == True):
             
            # Update the answer with maximum value
            answer = max(answer, len(subset))
 
    # Return the final result
    return answer
 
# Driver code
A = [ 2, 3, 13, 5, 14, 6, 7, 11 ]
N = len(A)
print(largestSubset(A, N))
 
# This code is contributed by Sanjit_Prasad

C#

// C# implementation to Find the length
// of the largest subset such that all
// elements are Pairwise Coprime
using System;
using System.Collections.Generic;
 
class GFG{
     
static int gcd(int a, int b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
         
    return gcd(a, b - a);
}
 
// Function to find the largest subset possible
static int largestSubset(int []a, int n)
{
    int answer = 0;
     
    // Iterate through all the subsets
    for(int i = 1; i < (1 << n); i++)
    {
        List<int> subset = new List<int>();
     
        // Check if jth bit in the counter is set
        for(int j = 0; j < n; j++)
        {
            if ((i & (1 << j)) != 0)
                subset.Add(a[j]);
        }
     
        int flag = 1;
     
        for(int j = 0; j < subset.Count; j++)
        {
            for(int k = j + 1; k < subset.Count; k++)
            {
                // Check if the gcd is not equal to 1
                if (gcd((int)subset[j],
                       (int) subset[k]) != 1)
                    flag = 0;
            }
        }
     
        if (flag == 1)
         
            // Update the answer with maximum value
            answer = Math.Max(answer,
                             (int)subset.Count);
    }
     
    // Return the final result
    return answer;
}
 
// Driver code
public static void Main()
{
    int []A = { 2, 3, 13, 5, 14, 6, 7, 11 };
     
    int N = A.Length;
     
    Console.WriteLine(largestSubset(A, N));
}
}
 
// This code is contributed by Stream_Cipher

Javascript

<script>
    // Javascript implementation to Find the length
    // of the largest subset such that all
    // elements are Pairwise Coprime
     
    function gcd(a, b)
    {
 
        // Everything divides 0
        if (a == 0)
            return b;
        if (b == 0)
            return a;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return gcd(a - b, b);
 
        return gcd(a, b - a);
    }
 
    // Function to find the largest subset possible
    function largestSubset(a, n)
    {
        let answer = 0;
 
        // Iterate through all the subsets
        for(let i = 1; i < (1 << n); i++)
        {
            let subset = [];
 
            // Check if jth bit in the counter is set
            for(let j = 0; j < n; j++)
            {
                if ((i & (1 << j)) != 0)
                    subset.push(a[j]);
            }
 
            let flag = 1;
 
            for(let j = 0; j < subset.length; j++)
            {
                for(let k = j + 1; k < subset.length; k++)
                {
                    // Check if the gcd is not equal to 1
                    if (gcd(subset[j], subset[k]) != 1)
                        flag = 0;
                }
            }
 
            if (flag == 1)
 
                // Update the answer with maximum value
                answer = Math.max(answer, subset.length);
        }
 
        // Return the final result
        return answer;
    }
     
    let A = [ 2, 3, 13, 5, 14, 6, 7, 11 ];
      
    let N = A.length;
      
    document.write(largestSubset(A, N));
     
</script>
Producción: 

6

 

Enfoque eficiente:
el método anterior se puede optimizar y el enfoque depende del hecho de que solo hay 15 números primos en los primeros 50 números naturales. Entonces, todos los números en la array tendrán factores primos solo entre estos 15 números. Usaremos Bitmasking y Programación Dinámica para optimizar el problema.

  • Dado que solo hay 15 números primos, considere una representación de 15 bits de cada número donde cada bit es 1 si ese índice de números primos es un factor de ese número. Indexaremos los números primos por indexación 0, lo que significa 2 en la posición 0, 3 en el índice 1 y así sucesivamente.
  • Una variable entera ‘ máscara ‘ indica los factores primos que ya han ocurrido en el subconjunto. Si se establece el i-ésimo bit en la máscara, entonces se ha producido el i-ésimo factor primo, de lo contrario no.
  • En cada paso de la relación de recurrencia , el elemento puede incluirse en el subconjunto o no puede incluirse. Si el elemento no está incluido en el subarreglo, simplemente muévase al siguiente índice. Si está incluido, cambie la máscara poniendo en ON todos los bits correspondientes a los factores primos del elemento actual en la máscara. El elemento actual solo se puede incluir si todos sus factores primos no han ocurrido previamente.
  • Esta condición se cumplirá solo si los bits correspondientes a los dígitos del elemento actual en la máscara están en OFF.

Si dibujamos el árbol de recursión completo, podemos observar que se están resolviendo muchos subproblemas que ocurrían una y otra vez. Así que usamos una tabla dp[][] tal que para cada índice dp[i][j], i es la posición del elemento en la array y j es la máscara.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation to Find the length of the Largest
// subset such that all elements are Pairwise Coprime
#include <bits/stdc++.h>
using namespace std;
 
// Dynamic programming table
int dp[5000][(1 << 10) + 5];
 
// Function to obtain the mask for any integer
int getmask(int val)
{
    int mask = 0;
 
    // List of prime numbers till 50
    int prime[15] = { 2, 3, 5, 7, 11, 13, 17, 19,
                      23, 29, 31, 37, 41, 43, 47 };
 
    // Iterate through all prime numbers to obtain the mask
    for (int i = 0; i < 15; i++) {
        if (val % prime[i] == 0) {
            // Set this prime's bit ON in the mask
            mask = mask | (1 << i);
        }
    }
 
    // Return the mask value
    return mask;
}
 
// Function to count the number of ways
int calculate(int pos, int mask,
              int a[], int n)
{
    if (pos == n || mask == (1 << n - 1))
        return 0;
 
    // Check if subproblem has been solved
    if (dp[pos][mask] != -1)
        return dp[pos][mask];
 
    int size = 0;
 
    // Excluding current element in the subset
    size = max(size, calculate(pos + 1, mask, a, n));
 
    // Check if there are no common prime factors
    // then only this element can be included
    if ((getmask(a[pos]) & mask) == 0) {
 
        // Calculate the new mask if this element is included
        int new_mask = (mask | (getmask(a[pos])));
 
        size = max(size, 1 + calculate(pos + 1, new_mask, a, n));
    }
 
    // Store and return the answer
    return dp[pos][mask] = size;
}
 
// Function to find the count of
// subarray with all digits unique
int largestSubset(int a[], int n)
{
    // Initializing dp
    memset(dp, -1, sizeof(dp));
 
    return calculate(0, 0, a, n);
}
 
// Driver code
int main()
{
 
    int A[] = { 2, 3, 13, 5, 14, 6, 7, 11 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    cout << largestSubset(A, N);
 
    return 0;
}

Java

// Java implementation to find the length
// of the largest subset such that all
// elements are Pairwise Coprime
import java.util.*;
 
class GFG{
     
// Dynamic programming table
static int dp[][] = new int [5000][1029];
 
// Function to obtain the mask for any integer
static int getmask(int val)
{
    int mask = 0;
     
    // List of prime numbers till 50
    int prime[] = { 2, 3, 5, 7, 11, 13, 17, 19,
                    23, 29, 31, 37, 41, 43, 47 };
     
    // Iterate through all prime numbers
    // to obtain the mask
    for(int i = 0; i < 15; i++)
    {
        if (val % prime[i] == 0)
        {
             
            // Set this prime's bit ON in the mask
            mask = mask | (1 << i);
        }
    }
     
    // Return the mask value
    return mask;
}
 
// Function to count the number of ways
static int calculate(int pos, int mask,
                     int a[], int n)
{
    if (pos == n ||
       mask == (int)(1 << n - 1))
        return 0;
     
    // Check if subproblem has been solved
    if (dp[pos][mask] != -1)
        return dp[pos][mask];
     
    int size = 0;
     
    // Excluding current element in the subset
    size = Math.max(size, calculate(pos + 1,
                                    mask, a, n));
     
    // Check if there are no common prime factors
    // then only this element can be included
    if ((getmask(a[pos]) & mask) == 0)
    {
         
        // Calculate the new mask if this
        // element is included
        int new_mask = (mask | (getmask(a[pos])));
     
        size = Math.max(size, 1 + calculate(pos + 1,
                                            new_mask,
                                            a, n));
    }
     
    // Store and return the answer
    return dp[pos][mask] = size;
}
 
// Function to find the count of
// subarray with all digits unique
static int largestSubset(int a[], int n)
{
    for(int i = 0; i < 5000; i++)
        Arrays.fill(dp[i], -1);
         
    return calculate(0, 0, a, n);
}
 
// Driver code
public static void main(String args[])
{
    int A[] = { 2, 3, 13, 5, 14, 6, 7, 11 };
     
    int N = A.length;
     
    System.out.println(largestSubset(A, N));
}
}
 
// This code is contributed by Stream_Cipher

Python

# Python implementation to find the
# length of the Largest subset such
# that all elements are Pairwise Coprime
 
# Dynamic programming table
dp = [[-1] * ((1 << 10) + 5)] * 5000
 
# Function to obtain the mask for any integer
def getmask(val):
     
    mask = 0
     
    # List of prime numbers till 50
    prime = [ 2, 3, 5, 7, 11, 13, 17, 19,
              23, 29, 31, 37, 41, 43, 47 ]
               
    # Iterate through all prime numbers
    # to obtain the mask
    for i in range(1, 15):
        if val % prime[i] == 0:
             
            # Set this prime's bit ON in the mask
            mask = mask | (1 << i)
             
    # Return the mask value
    return mask
     
# Function to count the number of ways
def calculate(pos, mask, a, n):
     
    if ((pos == n) or (mask == (1 << n - 1))):
        return 0
         
    # Check if subproblem has been solved
    if dp[pos][mask] != -1:
        return dp[pos][mask]
         
    size = 0
     
    # Excluding current element in the subset
    size = max(size, calculate(pos + 1,
                               mask, a, n))
                                
    # Check if there are no common prime factors
    # then only this element can be included
    if (getmask(a[pos]) & mask) == 0:
         
        # Calculate the new mask if this
        # element is included
        new_mask = (mask | (getmask(a[pos])))
        size = max(size, 1 + calculate(pos + 1,
                                       new_mask,
                                       a, n))
    # Store and return the answer
    dp[pos][mask] = size
    return dp[pos][mask]
 
# Function to find the count of
# subarray with all digits unique    
def largestSubset(A, n):
     
    return calculate(0, 0, A, n);
 
# Driver code
A = [ 2, 3, 13, 5, 14, 6, 7, 11 ]
N = len(A)
 
print(largestSubset(A, N))
 
# This code is contributed by Stream_Cipher

C#

// C# implementation to find the length
// of the largest subset such that all
// elements are Pairwise Coprime
using System;
 
class GFG{
     
// Dynamic programming table
static int [,] dp = new int [5000, 1029];
 
// Function to obtain the mask for any integer
static int getmask(int val)
{
    int mask = 0;
     
    // List of prime numbers till 50
    int []prime = { 2, 3, 5, 7, 11, 13, 17, 19,
                    23, 29, 31, 37, 41, 43, 47 };
     
    // Iterate through all prime
    // numbers to obtain the mask
    for(int i = 0; i < 15; i++)
    {
        if (val % prime[i] == 0)
        {
             
            // Set this prime's bit ON in the mask
            mask = mask | (1 << i);
        }
    }
     
    // Return the mask value
    return mask;
}
 
// Function to count the number of ways
static int calculate(int pos, int mask,
                     int []a, int n)
{
    if (pos == n ||
       mask == (int)(1 << n - 1))
        return 0;
     
    // Check if subproblem has been solved
    if (dp[pos, mask] != -1)
        return dp[pos, mask];
     
    int size = 0;
     
    // Excluding current element in the subset
    size = Math.Max(size, calculate(pos + 1,
                                    mask, a, n));
     
    // Check if there are no common prime factors
    // then only this element can be included
    if ((getmask(a[pos]) & mask) == 0)
    {
         
        // Calculate the new mask if
        // this element is included
        int new_mask = (mask | (getmask(a[pos])));
     
        size = Math.Max(size, 1 + calculate(pos + 1,
                                            new_mask,
                                            a, n));
    }
     
    // Store and return the answer
    return dp[pos, mask] = size;
}
 
// Function to find the count of
// subarray with all digits unique
static int largestSubset(int []a, int n)
{
    for(int i = 0; i < 5000; i++)
    {
        for(int j = 0; j < 1029; j++)
            dp[i, j] = -1;
    }
    return calculate(0, 0, a, n);
}
 
// Driver code
public static void Main()
{
    int []A = { 2, 3, 13, 5, 14, 6, 7, 11 };
     
    int N = A.Length;
     
    Console.WriteLine(largestSubset(A, N));
}
}
 
// This code is contributed by Stream_Cipher

Javascript

<script>
 
// JavaScript implementation to
// Find the length of the Largest
// subset such that all elements
// are Pairwise Coprime
 
// Dynamic programming table
var dp = Array.from(Array(5000), ()=>Array((1 << 10) + 5));
 
// Function to obtain the mask for any integer
function getmask( val)
{
    var mask = 0;
 
    // List of prime numbers till 50
    var prime = [2, 3, 5, 7, 11, 13, 17, 19,
                      23, 29, 31, 37, 41, 43, 47];
 
    // Iterate through all prime numbers to obtain the mask
    for (var i = 0; i < 15; i++) {
        if (val % prime[i] == 0) {
            // Set this prime's bit ON in the mask
            mask = mask | (1 << i);
        }
    }
 
    // Return the mask value
    return mask;
}
 
// Function to count the number of ways
function calculate(pos, mask, a, n)
{
    if (pos == n || mask == (1 << n - 1))
        return 0;
 
    // Check if subproblem has been solved
    if (dp[pos][mask] != -1)
        return dp[pos][mask];
 
    var size = 0;
 
    // Excluding current element in the subset
    size = Math.max(size, calculate(pos + 1, mask, a, n));
 
    // Check if there are no common prime factors
    // then only this element can be included
    if ((getmask(a[pos]) & mask) == 0) {
 
        // Calculate the new mask if this element is included
        var new_mask = (mask | (getmask(a[pos])));
 
        size = Math.max(size,
        1 + calculate(pos + 1, new_mask, a, n));
    }
 
    // Store and return the answer
    return dp[pos][mask] = size;
}
 
// Function to find the count of
// subarray with all digits unique
function largestSubset(a, n)
{
    // Initializing dp
    dp = Array.from(Array(5000),
    ()=>Array((1 << 10) + 5).fill(-1));
 
    return calculate(0, 0, a, n);
}
 
// Driver code
var A = [2, 3, 13, 5, 14, 6, 7, 11 ];
var N = A.length;
document.write( largestSubset(A, N));
 
 
</script>
Producción: 

6

Complejidad de tiempo: O(N * 15 * 2 15 )
 

Publicación traducida automáticamente

Artículo escrito por king_tsar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *