Dado un número N. La tarea es encontrar la suma de las siguientes series hasta el término n .
3, 7, 13, 21, 31, ….
Ejemplos :
Input : N = 3 Output : 23 Input : N = 25 Output : 5875
Acercarse:
Restando las dos ecuaciones anteriores, tenemos:
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the sum of given series #include <iostream> #include <math.h> using namespace std; // Function to calculate sum int findSum(int n) { // Return sum return (n * (pow(n, 2) + 3 * n + 5)) / 3; } // Driver code int main() { int n = 25; cout << findSum(n); return 0; }
Java
// Java program to find sum of // n terms of the given series import java.util.*; class GFG { static int calculateSum(int n) { // returning the final sum return (n * ((int)Math.pow(n, 2) + 3 * n + 5)) / 3; } // Driver Code public static void main(String arr[]) { // number of terms to // find the sum int n = 25; System.out.println(calculateSum(n)); } } // This code is contributed // by Surendra_Gangwar
Python 3
# Python program to find the # sum of given series # Function to calculate sum def findSum(n): # Return sum return (n*(pow(n, 2)+3 * n + 5))/3 # driver code n = 25 print(int(findSum(n)))
C#
// C# program to find // sum of n terms of // the given series using System; class GFG { static int calculateSum(int n) { // returning the final sum return (n * ((int)Math.Pow(n, 2) + 3 * n + 5)) / 3; } // Driver Code public static void Main() { // number of terms to // find the sum int n = 25; Console.WriteLine(calculateSum(n)); } } // This code is contributed // by inder_verma.
PHP
<?php // PHP Program to find the // sum of given series // Function to calculate sum function findSum($n) { // Return sum return ($n * (pow($n, 2) + 3 * $n + 5)) / 3; } // Driver code $n = 25; echo findSum($n); // This code is contributed // by inder_verma ?>
Javascript
<script> // javascript program to find sum of // n terms of the given series function calculateSum(n) { // returning the final sum return (n * (parseInt(Math.pow(n, 2) + 3 * n + 5)) / 3); } // Driver Code // number of terms to // find the sum var n = 25; document.write(calculateSum(n)); // This code contributed by shikhasingrajput </script>
Producción:
5875
Complejidad de tiempo : O(1)