Dado un número x positivo, la tarea es encontrar el logaritmo natural (ln) y logaritmo en base 10 (log 10 ) de este número con la ayuda de la expansión.
Ejemplo:
Input: x = 5 Output: ln 5.000 = 1.609 log10 5.000 = 0.699 Input: x = 10 Output: ln 10.000 = 2.303 log10 10.000 = 1.000
Acercarse:
- La expansión del logaritmo natural de x (ln x) es:
- Por lo tanto, esta serie se puede resumir como:
- Por lo tanto, se puede hacer una función para evaluar el enésimo término de la secuencia para 1 ≤ x ≤ n
- Ahora, para calcular log 10 x , se puede usar la siguiente fórmula:
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP code to Find the ln x and // log<sub>10</sub> x with the help of expansion #include <cmath> #include <iomanip> #include <iostream> using namespace std; // Function to calculate ln x using expansion double calculateLnx(double n) { double num, mul, cal, sum = 0; num = (n - 1) / (n + 1); // terminating value of the loop // can be increased to improve the precision for (int i = 1; i <= 1000; i++) { mul = (2 * i) - 1; cal = pow(num, mul); cal = cal / mul; sum = sum + cal; } sum = 2 * sum; return sum; } // Function to calculate log10 x double calculateLogx(double lnx) { return (lnx / 2.303); } // Driver Code int main() { double lnx, logx, n = 5; lnx = calculateLnx(n); logx = calculateLogx(lnx); // setprecision(3) is used to display // the output up to 3 decimal places cout << fixed << setprecision(3) << "ln " << n << " = " << lnx << endl; cout << fixed << setprecision(3) << "log10 " << n << " = " << logx << endl; }
Java
// Java code to Find the ln x and // log<sub>10</sub> x with the help of expansion import java.io.*; class GFG { // Function to calculate ln x using expansion static double calculateLnx(double n) { double num, mul, cal, sum = 0; num = (n - 1) / (n + 1); // terminating value of the loop // can be increased to improve the precision for (int i = 1; i <= 1000; i++) { mul = (2 * i) - 1; cal = Math.pow(num, mul); cal = cal / mul; sum = sum + cal; } sum = 2 * sum; return sum; } // Function to calculate log10 x static double calculateLogx(double lnx) { return (lnx / 2.303); } // Driver Code public static void main (String[] args) { double lnx, logx, n = 5; lnx = calculateLnx(n); logx = calculateLogx(lnx); // setprecision(3) is used to display // the output up to 3 decimal places System.out.println ("ln " + n + " = " + lnx ); System.out.println ("log10 " + n + " = "+ logx ); } } // This code is contributed by ajit
Python3
# Python 3 code to Find the ln x and # log<sub>10</sub> x with the help of expansion # Function to calculate ln x using expansion from math import pow def calculateLnx(n): sum = 0 num = (n - 1) / (n + 1) # terminating value of the loop # can be increased to improve the precision for i in range(1, 1001, 1): mul = (2 * i) - 1 cal = pow(num, mul) cal = cal / mul sum = sum + cal sum = 2 * sum return sum # Function to calculate log10 x def calculateLogx(lnx): return (lnx / 2.303) # Driver Code if __name__ == '__main__': n = 5 lnx = calculateLnx(n) logx = calculateLogx(lnx) # setprecision(3) is used to display # the output up to 3 decimal places print("ln", "{0:.3f}".format(n), "=", "{0:.3f}".format(lnx)) print("log10", "{0:.3f}".format(n), "=", "{0:.3f}".format(logx)) # This code is contributed by # Surendra_Gangwar
C#
// C# code to Find the ln x and // log<sub>10</sub> x with the help of expansion using System; class GFG { // Function to calculate ln x using expansion static double calculateLnx(double n) { double num, mul, cal, sum = 0; num = (n - 1) / (n + 1); // terminating value of the loop // can be increased to improve the precision for (int i = 1; i <= 1000; i++) { mul = (2 * i) - 1; cal = Math.Pow(num, mul); cal = cal / mul; sum = sum + cal; } sum = 2 * sum; return sum; } // Function to calculate log10 x static double calculateLogx(double lnx) { return (lnx / 2.303); } // Driver Code public static void Main (String[] args) { double lnx, logx, n = 5; lnx = calculateLnx(n); logx = calculateLogx(lnx); // setprecision(3) is used to display // the output up to 3 decimal places Console.WriteLine("ln " + n + " = " + lnx ); Console.WriteLine("log10 " + n + " = "+ logx ); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript code to Find the ln x and // log<sub>10</sub> x with the help of expansion // Function to calculate ln x using expansion function calculateLnx(n) { let num, mul, cal, sum = 0; num = (n - 1) / (n + 1); // Terminating value of the loop // can be increased to improve the precision for(let i = 1; i <= 1000; i++) { mul = (2 * i) - 1; cal = Math.pow(num, mul); cal = cal / mul; sum = sum + cal; } sum = 2 * sum; return sum; } // Function to calculate log10 x function calculateLogx(lnx) { return (lnx / 2.303); } // Driver Code let lnx, logx, n = 5; lnx = calculateLnx(n); logx = calculateLogx(lnx); // setprecision(3) is used to display // the output up to 3 decimal places document.write("ln " + n + " = " + lnx + "<br>"); document.write("log10 " + n + " = "+ logx + "<br>"); // This code is contributed by souravmahato348 </script>
Producción:
ln 5.000 = 1.609 log10 5.000 = 0.699
Publicación traducida automáticamente
Artículo escrito por DeveshRattan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA