Dados N bloques, de los cuales K está coloreado. Estos bloques de color K se indican mediante una array arr[] . La tarea consiste en contar el número de formas de colorear los bloques restantes sin colorear, de modo que solo cualquiera de los bloques adyacentes, de un bloque coloreado, pueda colorearse en un solo paso. Imprime la respuesta con módulo 10 9 +7.
Ejemplos:
Entrada: N = 6, K = 3, arr[] = {1, 2, 6}
Salida: 4
Explicación:
Las siguientes son las 4 formas de colorear los bloques (cada conjunto reblockquotesenvía el orden en que se colorean los bloques):
1 {3, 4, 5}
2. {3, 5, 4}
3. {5, 3, 4}
4. {5, 4, 3}Entrada: N = 9, K = 3, A = [3, 6, 7]
Salida: 180
Enfoque ingenuo: la idea es utilizar la recursividad . A continuación se muestran los pasos:
- Atraviesa cada bloque de 1 a N.
- Si el bloque actual (por ejemplo, b ) no está coloreado, compruebe si uno de los bloques adyacentes está coloreado o no.
- Si el bloque adyacente está coloreado, coloree el bloque actual e itere recursivamente para encontrar el siguiente bloque sin color.
- Después de que finalice la llamada recursiva anterior, elimine el color del bloque para la llamada recursiva anterior de blockquote y repita los pasos anteriores para el siguiente bloque sin color.
- El recuento de colorear los bloques en todas las llamadas recursivas anteriores da la cantidad de formas de colorear el bloque sin colorear.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; const int mod = 1000000007; // Recursive function to count the ways int countWays(int colored[], int count, int n) { // Base case if (count == n) { return 1; } // Initialise answer to 0 int answer = 0; // Color each uncolored block according // to the given condition for (int i = 1; i < n + 1; i++) { // If any block is uncolored if (colored[i] == 0) { // Check if adjacent blocks // are colored or not if (colored[i - 1] == 1 || colored[i + 1] == 1) { // Color the block colored[i] = 1; // recursively iterate for // next uncolored block answer = (answer + countWays(colored, count + 1, n)) % mod; // Uncolored for the next // recursive call colored[i] = 0; } } } // Return the final count return answer; } // Function to count the ways to color // block int waysToColor(int arr[], int n, int k) { // Mark which blocks are colored in // each recursive step int colored[n + 2] = { 0 }; for (int i = 0; i < k; i++) { colored[arr[i]] = 1; } // Function call to count the ways return countWays(colored, k, n); } // Driver Code int main() { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int arr[K] = { 1, 2, 6 }; // Function call cout << waysToColor(arr, N, K); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ static int mod = 1000000007; // Recursive function to count the ways static int countWays(int colored[], int count, int n) { // Base case if (count == n) { return 1; } // Initialise answer to 0 int answer = 0; // Color each uncolored block according // to the given condition for (int i = 1; i < n + 1; i++) { // If any block is uncolored if (colored[i] == 0) { // Check if adjacent blocks // are colored or not if (colored[i - 1] == 1 || colored[i + 1] == 1) { // Color the block colored[i] = 1; // recursively iterate for // next uncolored block answer = (answer + countWays(colored, count + 1, n)) % mod; // Uncolored for the next // recursive call colored[i] = 0; } } } // Return the final count return answer; } // Function to count the ways to color // block static int waysToColor(int arr[], int n, int k) { // Mark which blocks are colored in // each recursive step int colored[] = new int[n + 2]; for (int i = 0; i < k; i++) { colored[arr[i]] = 1; } // Function call to count the ways return countWays(colored, k, n); } // Driver Code public static void main(String[] args) { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int arr[] = { 1, 2, 6 }; // Function call System.out.print(waysToColor(arr, N, K)); } } // This code is contributed by sapnasingh4991
Python3
# Python3 program for the above approach mod = 1000000007 # Recursive function to count the ways def countWays(colored, count, n): # Base case if (count == n): return 1 # Initialise answer to 0 answer = 0 # Color each uncolored block according # to the given condition for i in range(1, n + 1): # If any block is uncolored if (colored[i] == 0): # Check if adjacent blocks # are colored or not if (colored[i - 1] == 1 or colored[i + 1] == 1): # Color the block colored[i] = 1 # recursively iterate for # next uncolored block answer = ((answer + countWays(colored, count + 1, n)) % mod) # Uncolored for the next # recursive call colored[i] = 0 # Return the final count return answer # Function to count the ways to color # block def waysToColor( arr, n, k): # Mark which blocks are colored in # each recursive step colored = [0] * (n + 2) for i in range(k): colored[arr[i]] = 1 # Function call to count the ways return countWays(colored, k, n) # Driver Code if __name__ == "__main__": # Number of blocks N = 6 # Number of colored blocks K = 3 arr = [ 1, 2, 6 ] # Function call print(waysToColor(arr, N, K)) # This code is contributed by chitranayal
C#
// C# program for the above approach using System; class GFG{ static int mod = 1000000007; // Recursive function to count the ways static int countWays(int []colored, int count, int n) { // Base case if (count == n) { return 1; } // Initialise answer to 0 int answer = 0; // Color each uncolored block according // to the given condition for (int i = 1; i < n + 1; i++) { // If any block is uncolored if (colored[i] == 0) { // Check if adjacent blocks // are colored or not if (colored[i - 1] == 1 || colored[i + 1] == 1) { // Color the block colored[i] = 1; // recursively iterate for // next uncolored block answer = (answer + countWays(colored, count + 1, n)) % mod; // Uncolored for the next // recursive call colored[i] = 0; } } } // Return the final count return answer; } // Function to count the ways to color // block static int waysToColor(int []arr, int n, int k) { // Mark which blocks are colored in // each recursive step int []colored = new int[n + 2]; for (int i = 0; i < k; i++) { colored[arr[i]] = 1; } // Function call to count the ways return countWays(colored, k, n); } // Driver Code public static void Main() { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int []arr = { 1, 2, 6 }; // Function call Console.Write(waysToColor(arr, N, K)); } } // This code is contributed by Code_Mech
Javascript
<script> // Javascript program for the above approach let mod = 1000000007; // Recursive function to count the ways function countWays(colored, count, n) { // Base case if (count == n) { return 1; } // Let initialise answer to 0 let answer = 0; // Color each uncolored block according // to the given condition for (let i = 1; i < n + 1; i++) { // If any block is uncolored if (colored[i] == 0) { // Check if adjacent blocks // are colored or not if (colored[i - 1] == 1 || colored[i + 1] == 1) { // Color the block colored[i] = 1; // recursively iterate for // next uncolored block answer = (answer + countWays(colored, count + 1, n)) % mod; // Uncolored for the next // recursive call colored[i] = 0; } } } // Return the final count return answer; } // Function to count the ways to color // block function waysToColor(arr, n, k) { // Mark which blocks are colored in // each recursive step let colored = Array.from({length: n+2}, (_, i) => 0); for (let i = 0; i < k; i++) { colored[arr[i]] = 1; } // Function call to count the ways return countWays(colored, k, n); } // Driver Code // Number of blocks let N = 6; // Number of colored blocks let K = 3; let arr = [ 1, 2, 6 ]; // Function call document.write(waysToColor(arr, N, K)); </script>
4
Complejidad de tiempo: O(N N-K )
Espacio Auxiliar: O(N)
Enfoque Eficiente: Para resolver este problema de manera eficiente utilizaremos el concepto de Permutación y Combinación . A continuación se muestran los pasos:
1. Si el número de bloques entre dos bloques de colores consecutivos es x, entonces el número de formas de colorear este conjunto de bloques viene dado por:
caminos = 2 x-1
2. Colorear cada conjunto de bloques sin colorear es independiente del otro. Supongamos que hay x bloques en una sección e y bloques en la otra sección. Para encontrar la combinación total cuando las dos secciones se fusionan viene dada por:
combinaciones totales =
3. Ordene los índices de bloques coloreados para encontrar la longitud de cada sección de bloque sin color e itere y encuentre la combinación de cada dos secciones usando la fórmula anterior.
4. Encuentre el coeficiente binomial utilizando el enfoque que se analiza en este artículo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; const int mod = 1000000007; // Function to count the ways to color // block int waysToColor(int arr[], int n, int k) { // For storing powers of 2 int powOf2[500] = { 0 }; // For storing binomial coefficient // values int c[500][500]; // Calculating binomial coefficient // using DP for (int i = 0; i <= n; i++) { c[i][0] = 1; for (int j = 1; j <= i; j++) { c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod; } } powOf2[0] = powOf2[1] = 1; // Calculating powers of 2 for (int i = 2; i <= n; i++) { powOf2[i] = powOf2[i - 1] * 2 % mod; } int rem = n - k; arr[k++] = n + 1; // Sort the indices to calculate // length of each section sort(arr, arr + k); // Initialise answer to 1 int answer = 1; for (int i = 0; i < k; i++) { // Find the length of each section int x = arr[i] - (i - 1 >= 0 ? arr[i - 1] : 0) - 1; // Merge this section answer *= c[rem][x] % mod * (i != 0 && i != k - 1 ? powOf2[x] : 1) % mod; rem -= x; } // Return the final count return answer; } // Driver Code int main() { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int arr[K] = { 1, 2, 6 }; // Function call cout << waysToColor(arr, N, K); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ static int mod = 1000000007; // Function to count the ways to color // block static int waysToColor(int arr[], int n, int k) { // For storing powers of 2 int powOf2[] = new int[500]; // For storing binomial coefficient // values int [][]c = new int[500][500]; // Calculating binomial coefficient // using DP for(int i = 0; i <= n; i++) { c[i][0] = 1; for(int j = 1; j <= i; j++) { c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod; } } powOf2[0] = powOf2[1] = 1; // Calculating powers of 2 for(int i = 2; i <= n; i++) { powOf2[i] = powOf2[i - 1] * 2 % mod; } int rem = n - k; arr[k++] = n + 1; // Sort the indices to calculate // length of each section Arrays.sort(arr); // Initialise answer to 1 int answer = 1; for(int i = 0; i < k; i++) { // Find the length of each section int x = arr[i] - (i - 1 >= 0 ? arr[i - 1] : 0) - 1; // Merge this section answer *= c[rem][x] % mod * (i != 0 && i != k - 1 ? powOf2[x] : 1) % mod; rem -= x; } // Return the final count return answer; } // Driver Code public static void main(String[] args) { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int arr[] = { 1, 2, 6 ,0 }; // Function call System.out.print(waysToColor(arr, N, K)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program for the above approach mod = 1000000007 # Function to count the ways to color # block def waysToColor(arr, n, k): global mod # For storing powers of 2 powOf2 = [0 for i in range(500)] # For storing binomial coefficient # values c = [[0 for i in range(500)] for j in range(500)] # Calculating binomial coefficient # using DP for i in range(n + 1): c[i][0] = 1; for j in range(1, i + 1): c[i][j] = (c[i - 1][j]+ c[i - 1][j - 1])% mod; powOf2[0] = 1 powOf2[1] = 1; # Calculating powers of 2 for i in range(2, n + 1): powOf2[i] = (powOf2[i - 1] * 2) % mod; rem = n - k; arr[k] = n + 1; k += 1 # Sort the indices to calculate # length of each section arr.sort() # Initialise answer to 1 answer = 1; for i in range(k): x = 0 # Find the length of each section if i - 1 >= 0: x = arr[i] - arr[i - 1] -1 else: x = arr[i] - 1 # Merge this section answer = answer * (c[rem][x] % mod) * ((powOf2[x] if (i != 0 and i != k - 1) else 1))% mod rem -= x; # Return the final count return answer; # Driver Code if __name__=='__main__': # Number of blocks N = 6; # Number of colored blocks K = 3; arr = [ 1, 2, 6, 0] # Function call print(waysToColor(arr, N, K)) # This code is contributed by rutvik_56
C#
// C# program for the above approach using System; class GFG{ static int mod = 1000000007; // Function to count the ways to color // block static int waysToColor(int []arr, int n, int k) { // For storing powers of 2 int []powOf2 = new int[500]; // For storing binomial coefficient // values int [,]c = new int[500, 500]; // Calculating binomial coefficient // using DP for(int i = 0; i <= n; i++) { c[i, 0] = 1; for(int j = 1; j <= i; j++) { c[i, j] = (c[i - 1, j] + c[i - 1, j - 1]) % mod; } } powOf2[0] = powOf2[1] = 1; // Calculating powers of 2 for(int i = 2; i <= n; i++) { powOf2[i] = powOf2[i - 1] * 2 % mod; } int rem = n - k; arr[k++] = n + 1; // Sort the indices to calculate // length of each section Array.Sort(arr); // Initialise answer to 1 int answer = 1; for(int i = 0; i < k; i++) { // Find the length of each section int x = arr[i] - (i - 1 >= 0 ? arr[i - 1] : 0) - 1; // Merge this section answer *= c[rem, x] % mod * (i != 0 && i != k - 1 ? powOf2[x] : 1) % mod; rem -= x; } // Return the readonly count return answer; } // Driver Code public static void Main(String[] args) { // Number of blocks int N = 6; // Number of colored blocks int K = 3; int []arr = { 1, 2, 6, 0 }; // Function call Console.Write(waysToColor(arr, N, K)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript program for the above approach let mod = 1000000007; // Function to count the ways to color // block function waysToColor(arr,n,k) { // For storing powers of 2 let powOf2 = new Array(500); // For storing binomial coefficient // values let c = new Array(500); for(let i=0;i<500;i++) { c[i]=new Array(500); for(let j=0;j<500;j++) { c[i][j]=0; } } // Calculating binomial coefficient // using DP for(let i = 0; i <= n; i++) { c[i][0] = 1; for(let j = 1; j <= i; j++) { c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod; } } powOf2[0] = powOf2[1] = 1; // Calculating powers of 2 for(let i = 2; i <= n; i++) { powOf2[i] = powOf2[i - 1] * 2 % mod; } let rem = n - k; arr[k++] = n + 1; // Sort the indices to calculate // length of each section arr.sort(function(a,b){return a-b;}); // Initialise answer to 1 let answer = 1; for(let i = 0; i < k; i++) { // Find the length of each section let x = arr[i] - (i - 1 >= 0 ? arr[i - 1] : 0) - 1; // Merge this section answer *= c[rem][x] % mod * (i != 0 && i != k - 1 ? powOf2[x] : 1) % mod; rem -= x; } // Return the final count return answer; } // Driver Code // Number of blocks let N = 6; // Number of colored blocks let K = 3; let arr=[ 1, 2, 6 ,0]; // Function call document.write(waysToColor(arr, N, K)); // This code is contributed by avanitrachhadiya2155 </script>
4
Complejidad temporal: O(N 2 )
Espacio auxiliar: O(5 2 * 10 4 )