Los números de boom son números que consisten solo en los dígitos 2 y 3. Dado un número entero k (0<k<=10^7), muestra el k-ésimo número de Boom.
Ejemplos:
Input : k = 2 Output: 3 Input : k = 3 Output: 22 Input : k = 100 Output: 322323 Input: k = 1000000 Output: 3332322223223222223
La idea es muy simple como Generar Números Binarios . Aquí también usamos el mismo enfoque,
usamos la estructura de datos de la cola para resolver este problema. Primero ponga en cola «2» y luego «3», estos dos son el primer y segundo número de boom respectivamente. Ahora configure el conteo = 2, para cada vez que aparezca() al frente de la cola y agregue «2» en el número emergente e incremente el conteo ++ si (recuento == k) luego imprima el número de Boom actual ; de lo contrario, agregue «3» en el número emergente e incremente el conteo ++ si (count==k) luego imprime el número de Boom actual . Repite el proceso hasta llegar al número de K’th Boom .
Este enfoque puede verse como BFS de un árbol con la raíz como una string vacía. El hijo izquierdo de cada Node tiene 2 adjuntos y el hijo derecho tiene 3 adjuntos.
A continuación se muestra la implementación de esta idea.
C++
// C++ program to find K'th Boom number #include<bits/stdc++.h> using namespace std; typedef long long int ll; // This function uses queue data structure to K'th // Boom number void boomNumber(ll k) { // Create an empty queue of strings queue<string> q; // Enqueue an empty string q.push(""); // counter for K'th element ll count = 0; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number string s1 = q.front(); // pop front q.pop(); // Store current Boom number before changing it string s2 = s1; // Append "2" to string s1 and enqueue it q.push(s1.append("2")); count++; // check if count==k if (count==k) { cout << s1 << endl; // K'th Boom number break; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front q.push(s2.append("3")); count++; // check if count==k if (count==k) { cout << s2 << endl; // K'th Boom number break; } } return ; } // Driver program to test above function int main() { ll k = 1000000; boomNumber(k); return 0; }
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG { // This function uses queue data structure to K'th // Boom number static void boomNumber(long k) { // Create an empty queue of strings Queue<String> q = new LinkedList<String>(); // Enqueue an empty string q.add(""); // counter for K'th element long count = 0; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number String s1 = q.poll(); // Store current Boom number before changing it String s2 = s1; // Append "2" to string s1 and enqueue it q.add(s1+"2"); count++; // check if count==k if (count==k) { System.out.println(s1); // K'th Boom number break; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front q.add(s2+"3"); count++; // check if count==k if (count==k) { System.out.println(s2); // K'th Boom number break; } } return ; } // Driver code public static void main(String args[]) { long k = 1000000; boomNumber(k); } } // This code is contributed by shinjanpatra
Python3
# Python3 program to find K'th Boom number # This function uses queue data structure to K'th # Boom number def boomNumber(k): # Create an empty queue of strings q = [] # Enqueue an empty string q.append("") # counter for K'th element count = 0 # This loop checks the value of count to # become equal to K when value of count # will be equals to k we will print the # Boom number while (count <= k): # current Boom number s1 = q[0] # pop front q = q[1:] # Store current Boom number before changing it s2 = s1 # Append "2" to string s1 and enqueue it s1 += '2' q.append(s1) count = count + 1 # check if count==k if (count==k): print(s1) # K'th Boom number break # Append "3" to string s2 and enqueue it. # Note that s2 contains the previous front s2 += '3' q.append(s2) count = count + 1 # check if count==k if (count==k): print(s2) # K'th Boom number break return # Driver program to test above function k = 1000000 boomNumber(k) # This code is contributed by shinjanpatra
C#
// C# program to find K'th Boom number using System; using System.Collections; class GFG{ // This function uses queue data structure // to K'th Boom number static void boomNumber(long k) { // Create an empty queue of strings Queue q = new Queue(); // Enqueue an empty string q.Enqueue(""); // counter for K'th element long count = 0; // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k) { // current Boom number string s1 = (string)q.Dequeue(); // Store current Boom number // before changing it string s2 = s1; // Append "2" to string s1 and // enqueue it s1 += "2"; q.Enqueue(s1); count++; // Check if count==k if (count == k) { // K'th Boom number Console.Write(s1); break; } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front s2 += "3"; q.Enqueue(s2); count++; // Check if count==k if (count == k) { // K'th Boom number Console.Write(s2); break; } } return; } // Driver code public static void Main(string []arg) { long k = 1000000; boomNumber(k); } } // This code is contributed by rutvik_56
Javascript
<script> // JavaScript program to find K'th Boom number // This function uses queue data structure to K'th // Boom number function boomNumber(k){ // Create an empty queue of strings let q = [] // Enqueue an empty string q.push("") // counter for K'th element let count = 0 // This loop checks the value of count to // become equal to K when value of count // will be equals to k we will print the // Boom number while (count <= k){ // current Boom number let s1 = q.shift() // Store current Boom number before changing it let s2 = s1 // Append "2" to string s1 and enqueue it s1 += '2' q.push(s1) count = count + 1 // check if count==k if (count==k){ document.write(s1,"</br>") // K'th Boom number break } // Append "3" to string s2 and enqueue it. // Note that s2 contains the previous front s2 += '3' q.push(s2) count = count + 1 // check if count==k if (count==k){ document.write(s2,"</br>") // K'th Boom number break } } return } // Driver program to test above function let k = 1000000 boomNumber(k) // This code is contributed by shinjanpatra </script>
3332322223223222223
Este artículo es una contribución de Shashank Mishra (Gullu) . Este artículo está revisado por el equipo GeeksforGeeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA