Dada una array de n enteros. La tarea es encontrar el número más grande que no sea un cubo perfecto. Imprime -1 si no hay ningún número que sea un cubo perfecto.
Ejemplos :
Input: arr[] = {16, 8, 25, 2, 3, 10} Output: 25 25 is the largest number that is not a perfect cube. Input: arr[] = {36, 64, 10, 16, 29, 25} Output: 36
Una solución simple es ordenar los elementos y luego ordenar los números y comenzar a buscar desde atrás un número de cubo no perfecto usando la función cbrt(). El primer número desde el final que no es un número cúbico perfecto es nuestra respuesta. La complejidad de clasificación es O(n log n) y de la función cbrt() es log n, por lo que en el peor de los casos, la complejidad es O(n log n).
Una solución eficiente es iterar para todos los elementos en O(n) y comparar cada vez con el elemento máximo y almacenar el máximo de todos los cubos no perfectos.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the largest non-perfect // cube number among n numbers #include <bits/stdc++.h> using namespace std; // Function to check if a number // is perfect cube number or not bool checkPerfectcube(int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest non perfect // cube number in the array int largestNonPerfectcubeNumber(int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a non perfect cube if (!checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof(a) / sizeof(a[0]); cout << largestNonPerfectcubeNumber(a, n); return 0; }
C
// C program to find the largest non-perfect // cube number among n numbers #include <stdio.h> #include <math.h> #include <stdbool.h> int max(int a, int b) { int max = a; if(max < b) max = b; return max; } // Function to check if a number // is perfect cube number or not bool checkPerfectcube(int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest non perfect // cube number in the array int largestNonPerfectcubeNumber(int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a non perfect cube if (!checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof(a) / sizeof(a[0]); printf("%d",largestNonPerfectcubeNumber(a, n)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find the largest non-perfect // cube number among n numbers import java.io.*; class GFG { // Function to check if a number // is perfect cube number or not static boolean checkPerfectcube(int n) { // takes the sqrt of the number int d = (int)Math.cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest non perfect // cube number in the array static int largestNonPerfectcubeNumber(int []a, int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a non perfect cube if (!checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code public static void main (String[] args) { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = a.length; System.out.print( largestNonPerfectcubeNumber(a, n)); } } // This code is contributed // by inder_verma
Python 3
# Python 3 program to find the largest # non-perfect cube number among n numbers import math # Function to check if a number # is perfect cube number or not def checkPerfectcube(n): # takes the sqrt of the number cube_root = n ** (1./3.) if round(cube_root) ** 3 == n: return True else: return False # Function to find the largest non # perfect cube number in the array def largestNonPerfectcubeNumber(a, n): # stores the maximum of all # perfect cube numbers maxi = -1 # Traverse all elements in the array for i in range(0, n, 1): # store the maximum if current # element is a non perfect cube if (checkPerfectcube(a[i]) == False): maxi = max(a[i], maxi) return maxi # Driver Code if __name__ == '__main__': a = [16, 64, 25, 2, 3, 10] n = len(a) print(largestNonPerfectcubeNumber(a, n)) # This code is contributed by # Surendra_Gangwar
C#
// C# program to find the largest non-perfect // cube number among n numbers using System; public class GFG { // Function to check if a number // is perfect cube number or not static bool checkPerfectcube(int n) { // takes the sqrt of the number int d = (int)Math.Ceiling(Math.Pow(n, (double)1 / 3)); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest non perfect // cube number in the array static int largestNonPerfectcubeNumber(int []a, int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a non perfect cube if (checkPerfectcube(a[i])==false) maxi = Math.Max(a[i], maxi); } return maxi; } // Driver Code public static void Main () { int []a = { 16, 64, 25, 2, 3, 10 }; int n = a.Length; Console.WriteLine( largestNonPerfectcubeNumber(a, n)); } } /*This code is contributed by PrinciRaj1992*/
PHP
<?php // PHP program to find the largest non-perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube($n) { // takes the sqrt of the number $d = (int)round(pow($n, 1/3)); // checks if it is a perfect // cube number if ($d * $d * $d == $n) return true; return false; } // Function to find the largest non perfect // cube number in the array function largestNonPerfectcubeNumber($a, $n) { // stores the maximum of all // perfect cube numbers $maxi = -1; // Traverse all elements in the array for ($i = 0; $i < $n; $i++) { // store the maximum if current // element is a non perfect cube if (!checkPerfectcube($a[$i])) $maxi = max($a[$i], $maxi); } return $maxi; } // Driver Code $a = array( 16, 64, 25, 2, 3, 10 ); $n = count($a); echo largestNonPerfectcubeNumber($a, $n); // this code is contributed by mits ?>
Javascript
<script> // Javascript program to find the largest non-perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube(n) { // takes the sqrt of the number let d = Math.cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest non perfect // cube number in the array function largestNonPerfectcubeNumber(a, n) { // stores the maximum of all // perfect cube numbers let maxi = -1; // Traverse all elements in the array for (let i = 0; i < n; i++) { // store the maximum if current // element is a non perfect cube if (!checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code let a = [ 16, 64, 25, 2, 3, 10 ]; let n = a.length; document.write(largestNonPerfectcubeNumber(a, n)); // This code is contributed by souravmahato348. </script>
25
Complejidad de tiempo: O (nlog 3 (val)), ya que se ejecuta un ciclo de 0 a (n – 1) donde val es el valor máximo de la array.
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.
Publicación traducida automáticamente
Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA