Número más grande en una array que no es un cubo perfecto

Dada una array de n enteros. La tarea es encontrar el número más grande que no sea un cubo perfecto. Imprime -1 si no hay ningún número que sea un cubo perfecto.
Ejemplos

Input: arr[] = {16, 8, 25, 2, 3, 10} 
Output: 25
25 is the largest number that is not a perfect cube. 

Input: arr[] = {36, 64, 10, 16, 29, 25}
Output: 36

Una solución simple es ordenar los elementos y luego ordenar los números y comenzar a buscar desde atrás un número de cubo no perfecto usando la función cbrt(). El primer número desde el final que no es un número cúbico perfecto es nuestra respuesta. La complejidad de clasificación es O(n log n) y de la función cbrt() es log n, por lo que en el peor de los casos, la complejidad es O(n log n).
Una solución eficiente es iterar para todos los elementos en O(n) y comparar cada vez con el elemento máximo y almacenar el máximo de todos los cubos no perfectos.
A continuación se muestra la implementación del enfoque anterior: 

C++

// CPP program to find the largest non-perfect
// cube number among n numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is perfect cube number or not
bool checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d = cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest non perfect
// cube number in the array
int largestNonPerfectcubeNumber(int a[], int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a non perfect cube
        if (!checkPerfectcube(a[i]))
            maxi = max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
int main()
{
    int a[] = { 16, 64, 25, 2, 3, 10 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << largestNonPerfectcubeNumber(a, n);
 
    return 0;
}

C

// C program to find the largest non-perfect
// cube number among n numbers
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
 
int max(int a, int b)
{
  int max = a;
  if(max < b)
    max = b;
  return max;
}
 
// Function to check if a number
// is perfect cube number or not
bool checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d = cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest non perfect
// cube number in the array
int largestNonPerfectcubeNumber(int a[], int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a non perfect cube
        if (!checkPerfectcube(a[i]))
            maxi = max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
int main()
{
    int a[] = { 16, 64, 25, 2, 3, 10 };
    int n = sizeof(a) / sizeof(a[0]);
    printf("%d",largestNonPerfectcubeNumber(a, n));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.

Java

// Java program to find the largest non-perfect
// cube number among n numbers
 
import java.io.*;
 
class GFG {
   
 
// Function to check if a number
// is perfect cube number or not
static boolean checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d = (int)Math.cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest non perfect
// cube number in the array
static int largestNonPerfectcubeNumber(int []a, int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a non perfect cube
        if (!checkPerfectcube(a[i]))
            maxi = Math.max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
 
 
    public static void main (String[] args) {
    int a[] = { 16, 64, 25, 2, 3, 10 };
 
    int n = a.length;
 
    System.out.print( largestNonPerfectcubeNumber(a, n));
    }
}
// This code is contributed
// by inder_verma

Python 3

# Python 3 program to find the largest
# non-perfect cube number among n numbers
import math
 
# Function to check if a number
# is perfect cube number or not
def checkPerfectcube(n):
     
    # takes the sqrt of the number
    cube_root = n ** (1./3.)
    if round(cube_root) ** 3 == n:
        return True
    else:
        return False
 
# Function to find the largest non
# perfect cube number in the array
def largestNonPerfectcubeNumber(a, n):
     
    # stores the maximum of all
    # perfect cube numbers
    maxi = -1
 
    # Traverse all elements in the array
    for i in range(0, n, 1):
         
        # store the maximum if current
        # element is a non perfect cube
        if (checkPerfectcube(a[i]) == False):
            maxi = max(a[i], maxi)
     
    return maxi
 
# Driver Code
if __name__ == '__main__':
    a = [16, 64, 25, 2, 3, 10]
 
    n = len(a)
 
    print(largestNonPerfectcubeNumber(a, n))
 
# This code is contributed by
# Surendra_Gangwar

C#

// C# program to find the largest non-perfect
// cube number among n numbers
using System;
public class GFG {
 
 
    // Function to check if a number
    // is perfect cube number or not
    static bool checkPerfectcube(int n)
    {
        // takes the sqrt of the number
        int d = (int)Math.Ceiling(Math.Pow(n, (double)1 / 3));
 
        // checks if it is a perfect
        // cube number
        if (d * d * d == n)
            return true;
 
        return false;
    }
 
    // Function to find the largest non perfect
    // cube number in the array
    static int largestNonPerfectcubeNumber(int []a, int n)
    {
        // stores the maximum of all
        // perfect cube numbers
        int maxi = -1;
 
        // Traverse all elements in the array
        for (int i = 0; i < n; i++) {
 
            // store the maximum if current
            // element is a non perfect cube
            if (checkPerfectcube(a[i])==false)
                maxi = Math.Max(a[i], maxi);
        }
 
        return maxi;
    }
 
    // Driver Code
 
 
        public static void Main () {
        int []a = { 16, 64, 25, 2, 3, 10 };
 
        int n = a.Length;
 
        Console.WriteLine( largestNonPerfectcubeNumber(a, n));
        }
}
/*This code is contributed by PrinciRaj1992*/

PHP

<?php
// PHP program to find the largest non-perfect
// cube number among n numbers
 
 
// Function to check if a number
// is perfect cube number or not
function checkPerfectcube($n)
{
    // takes the sqrt of the number
    $d = (int)round(pow($n, 1/3));
    // checks if it is a perfect
    // cube number
    if ($d * $d * $d == $n)
        return true;
 
    return false;
}
 
// Function to find the largest non perfect
// cube number in the array
function largestNonPerfectcubeNumber($a, $n)
{
    // stores the maximum of all
    // perfect cube numbers
    $maxi = -1;
 
    // Traverse all elements in the array
    for ($i = 0; $i < $n; $i++) {
 
        // store the maximum if current
        // element is a non perfect cube
        if (!checkPerfectcube($a[$i]))
            $maxi = max($a[$i], $maxi);
    }
 
    return $maxi;
}
 
// Driver Code
 
    $a = array( 16, 64, 25, 2, 3, 10 );
 
    $n = count($a);
 
    echo largestNonPerfectcubeNumber($a, $n);
 
 
// this code is contributed by mits
?>

Javascript

<script>
// Javascript program to find the largest non-perfect
// cube number among n numbers
 
// Function to check if a number
// is perfect cube number or not
function checkPerfectcube(n)
{
 
    // takes the sqrt of the number
    let d = Math.cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest non perfect
// cube number in the array
function largestNonPerfectcubeNumber(a, n)
{
    // stores the maximum of all
    // perfect cube numbers
    let maxi = -1;
 
    // Traverse all elements in the array
    for (let i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a non perfect cube
        if (!checkPerfectcube(a[i]))
            maxi = Math.max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
let a = [ 16, 64, 25, 2, 3, 10 ];
let n = a.length;
document.write(largestNonPerfectcubeNumber(a, n));
 
// This code is contributed by souravmahato348.
</script>
Producción: 

25

 

Complejidad de tiempo: O (nlog 3 (val)), ya que se ejecuta un ciclo de 0 a (n – 1) donde val es el valor máximo de la array.

Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.

Publicación traducida automáticamente

Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *