Dada una secuencia de N elementos, solo se pueden realizar tres operaciones en cualquier elemento como máximo una vez. Las operaciones son:
- Agregue uno al elemento.
- Resta uno del elemento.
- Deje el elemento sin cambios.
Realice cualquiera de las operaciones en todos los elementos de la array. La tarea es encontrar el número mínimo de operaciones (suma y resta) que se pueden realizar en la secuencia, para convertirla en una Progresión Geométrica . Si no es posible generar una GP realizando las operaciones anteriores, imprima -1.
Ejemplos :
Entrada : a[] = {1, 1, 4, 7, 15, 33}
Salida : El número mínimo de operaciones es 4.
Pasos:
- Mantener un 1 sin cambios
- Agregue uno a un 2 .
- Mantener un 3 sin cambios
- Resta uno de un 4 .
- Resta uno de un 5 .
- Suma uno a un 6 .
La secuencia resultante es {1, 2, 4, 8, 16, 32}
Entrada : a[] = {20, 15, 20, 15}
Salida : -1
Enfoque La observación clave que se debe hacer aquí es que cualquier Progresión Geométrica está determinada únicamente por sus dos primeros elementos (Dado que la relación entre cada uno de los siguientes pares tiene que ser la misma que la relación entre este par, que consta de los dos primeros elementos ). Ya que solo son posibles 3*3 permutaciones. Las posibles combinaciones de operaciones son (+1, +1), (+1, 0), (+1, -1), (-1, +1), (-1, 0), (-1, -1 ), (0, +1), (0, 0) y (0, -1). Usando fuerza bruta todas estas 9 permutaciones y comprobando si forman un GP en tiempo lineal nos dará la respuesta. El mínimo de las operaciones que resulten en combinaciones que estén en GP será la respuesta.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find minimum number // of operations to convert a given // sequence to an Geometric Progression #include <bits/stdc++.h> using namespace std; // Function to print the GP series void construct(int n, pair<double, double> ans_pair) { // Check for possibility if (ans_pair.first == -1) { cout << "Not possible"; return; } double a1 = ans_pair.first; double a2 = ans_pair.second; double r = a2 / a1; cout << "The resultant sequence is:\n"; for (int i = 1; i <= n; i++) { double ai = a1 * pow(r, i - 1); cout << ai << " "; } } // Function for getting the Arithmetic Progression void findMinimumOperations(double* a, int n) { int ans = INT_MAX; // The array c describes all the given set of // possible operations. int c[] = { -1, 0, 1 }; // Size of c int possibilities = 3; // candidate answer int pos1 = -1, pos2 = -1; // loop through all the permutations of the first two // elements. for (int i = 0; i < possibilities; i++) { for (int j = 0; j < possibilities; j++) { // a1 and a2 are the candidate first two elements // of the possible GP. double a1 = a[1] + c[i]; double a2 = a[2] + c[j]; // temp stores the current answer, including the // modification of the first two elements. int temp = abs(a1 - a[1]) + abs(a2 - a[2]); if (a1 == 0 || a2 == 0) continue; // common ratio of the possible GP double r = a2 / a1; // To check if the chosen set is valid, and id yes // find the number of operations it takes. for (int pos = 3; pos <= n; pos++) { // ai is value of a[i] according to the assumed // first two elements a1, a2 // ith element of an GP = a1*((a2-a1)^(i-1)) double ai = a1 * pow(r, pos - 1); // Check for the "proposed" element to be only // differing by one if (a[pos] == ai) { continue; } else if (a[pos] + 1 == ai || a[pos] - 1 == ai) { temp++; } else { temp = INT_MAX; // set the temporary ans break; // to infinity and break } } // update answer if (temp < ans) { ans = temp; pos1 = a1; pos2 = a2; } } } if (ans == -1) { cout << "-1"; return; } cout << "Minimum Number of Operations are " << ans << "\n"; pair<double, double> ans_pair = { pos1, pos2 }; // Calling function to print the sequence construct(n, ans_pair); } // Driver Code int main() { // array is 1-indexed, with a[0] = 0 // for the sake of simplicity double a[] = { 0, 7, 20, 49, 125 }; int n = sizeof(a) / sizeof(a[0]); // Function to print the minimum operations // and the sequence of elements findMinimumOperations(a, n - 1); return 0; }
Java
// Java program to find minimum number // of operations to convert a given // sequence to an Geometric Progression import java.util.*; class GFG { static class pair { double first, second; public pair(double first, double second) { this.first = first; this.second = second; } } // Function to print the GP series static void construct(int n, pair ans_pair) { // Check for possibility if (ans_pair.first == -1) { System.out.print("Not possible"); return; } double a1 = ans_pair.first; double a2 = ans_pair.second; double r = a2 / a1; System.out.print("The resultant sequence is:\n"); for (int i = 1; i <= n; i++) { int ai = (int) (a1 * Math.pow(r, i - 1)); System.out.print(ai + " "); } } // Function for getting the Arithmetic Progression static void findMinimumOperations(double []a, int n) { int ans = Integer.MAX_VALUE; // The array c describes all the given set of // possible operations. int c[] = { -1, 0, 1 }; // Size of c int possibilities = 3; // candidate answer int pos1 = -1, pos2 = -1; // loop through all the permutations of the first two // elements. for (int i = 0; i < possibilities; i++) { for (int j = 0; j < possibilities; j++) { // a1 and a2 are the candidate first two elements // of the possible GP. double a1 = a[1] + c[i]; double a2 = a[2] + c[j]; // temp stores the current answer, including the // modification of the first two elements. int temp = (int) (Math.abs(a1 - a[1]) + Math.abs(a2 - a[2])); if (a1 == 0 || a2 == 0) continue; // common ratio of the possible GP double r = a2 / a1; // To check if the chosen set is valid, and id yes // find the number of operations it takes. for (int pos = 3; pos <= n; pos++) { // ai is value of a[i] according to the assumed // first two elements a1, a2 // ith element of an GP = a1*((a2-a1)^(i-1)) double ai = a1 * Math.pow(r, pos - 1); // Check for the "proposed" element to be only // differing by one if (a[pos] == ai) { continue; } else if (a[pos] + 1 == ai || a[pos] - 1 == ai) { temp++; } else { temp = Integer.MAX_VALUE; // set the temporary ans break; // to infinity and break } } // update answer if (temp < ans) { ans = temp; pos1 = (int) a1; pos2 = (int) a2; } } } if (ans == -1) { System.out.print("-1"); return; } System.out.print("Minimum Number of Operations are " + ans+ "\n"); pair ans_pair = new pair( pos1, pos2 ); // Calling function to print the sequence construct(n, ans_pair); } // Driver Code public static void main(String[] args) { // array is 1-indexed, with a[0] = 0 // for the sake of simplicity double a[] = { 0, 7, 20, 49, 125 }; int n = a.length; // Function to print the minimum operations // and the sequence of elements findMinimumOperations(a, n - 1); } } // This code is contributed by 29AjayKumar
Python3
# Python program to find minimum number # of operations to convert a given # sequence to an Geometric Progression from sys import maxsize as INT_MAX # Function to print the GP series def construct(n: int, ans_pair: tuple): # Check for possibility if ans_pair[0] == -1: print("Not possible") return a1 = ans_pair[0] a2 = ans_pair[1] r = a2 / a1 print("The resultant sequence is") for i in range(1, n + 1): ai = a1 * pow(r, i - 1) print(int(ai), end=" ") # Function for getting the Arithmetic Progression def findMinimumOperations(a: list, n: int): ans = INT_MAX # The array c describes all the given set of # possible operations. c = [-1, 0, 1] # Size of c possibilities = 3 # candidate answer pos1 = -1 pos2 = -1 # loop through all the permutations of the first two # elements. for i in range(possibilities): for j in range(possibilities): # a1 and a2 are the candidate first two elements # of the possible GP. a1 = a[1] + c[i] a2 = a[2] + c[j] # temp stores the current answer, including the # modification of the first two elements. temp = abs(a1 - a[1]) + abs(a2 - a[2]) if a1 == 0 or a2 == 0: continue # common ratio of the possible GP r = a2 / a1 # To check if the chosen set is valid, and id yes # find the number of operations it takes. for pos in range(3, n + 1): # ai is value of a[i] according to the assumed # first two elements a1, a2 # ith element of an GP = a1*((a2-a1)^(i-1)) ai = a1 * pow(r, pos - 1) # Check for the "proposed" element to be only # differing by one if a[pos] == ai: continue elif a[pos] + 1 == ai or a[pos] - 1 == ai: temp += 1 else: temp = INT_MAX # set the temporary ans break # to infinity and break # update answer if temp < ans: ans = temp pos1 = a1 pos2 = a2 if ans == -1: print("-1") return print("Minimum number of Operations are", ans) ans_pair = (pos1, pos2) # Calling function to print the sequence construct(n, ans_pair) # Driver Code if __name__ == "__main__": # array is 1-indexed, with a[0] = 0 # for the sake of simplicity a = [0, 7, 20, 49, 125] n = len(a) # Function to print the minimum operations # and the sequence of elements findMinimumOperations(a, n - 1) # This code is contributed by # sanjeev2552
C#
// C# program to find minimum number // of operations to convert a given // sequence to an Geometric Progression using System; class GFG { class pair { public double first, second; public pair(double first, double second) { this.first = first; this.second = second; } } // Function to print the GP series static void construct(int n, pair ans_pair) { // Check for possibility if (ans_pair.first == -1) { Console.Write("Not possible"); return; } double a1 = ans_pair.first; double a2 = ans_pair.second; double r = a2 / a1; Console.Write("The resultant sequence is:\n"); for (int i = 1; i <= n; i++) { int ai = (int) (a1 * Math.Pow(r, i - 1)); Console.Write(ai + " "); } } // Function for getting the Arithmetic Progression static void findMinimumOperations(double []a, int n) { int ans = int.MaxValue; // The array c describes all the given set of // possible operations. int []c = { -1, 0, 1 }; // Size of c int possibilities = 3; // candidate answer int pos1 = -1, pos2 = -1; // loop through all the permutations of the first two // elements. for (int i = 0; i < possibilities; i++) { for (int j = 0; j < possibilities; j++) { // a1 and a2 are the candidate first two elements // of the possible GP. double a1 = a[1] + c[i]; double a2 = a[2] + c[j]; // temp stores the current answer, including the // modification of the first two elements. int temp = (int) (Math.Abs(a1 - a[1]) + Math.Abs(a2 - a[2])); if (a1 == 0 || a2 == 0) continue; // common ratio of the possible GP double r = a2 / a1; // To check if the chosen set is valid, and id yes // find the number of operations it takes. for (int pos = 3; pos <= n; pos++) { // ai is value of a[i] according to the assumed // first two elements a1, a2 // ith element of an GP = a1*((a2-a1)^(i-1)) double ai = a1 * Math.Pow(r, pos - 1); // Check for the "proposed" element to be only // differing by one if (a[pos] == ai) { continue; } else if (a[pos] + 1 == ai || a[pos] - 1 == ai) { temp++; } else { temp = int.MaxValue; // set the temporary ans break; // to infinity and break } } // update answer if (temp < ans) { ans = temp; pos1 = (int) a1; pos2 = (int) a2; } } } if (ans == -1) { Console.Write("-1"); return; } Console.Write("Minimum Number of Operations are " + ans+ "\n"); pair ans_pair = new pair( pos1, pos2 ); // Calling function to print the sequence construct(n, ans_pair); } // Driver Code public static void Main(String[] args) { // array is 1-indexed, with a[0] = 0 // for the sake of simplicity double []a = { 0, 7, 20, 49, 125 }; int n = a.Length; // Function to print the minimum operations // and the sequence of elements findMinimumOperations(a, n - 1); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program to find minimum number // of operations to convert a given // sequence to an Geometric Progression class pair { constructor(first, second) { this.first = first; this.second = second; } } // Function to print the GP series function construct(n, ans_pair) { // Check for possibility if (ans_pair.first == -1) { document.write("Not possible"); return; } var a1 = ans_pair.first; var a2 = ans_pair.second; var r = a2 / a1; document.write("The resultant sequence is:<br>"); for(var i = 1; i <= n; i++) { var ai = parseInt(a1 * Math.pow(r, i - 1)); document.write(ai + " "); } } // Function for getting the Arithmetic Progression function findMinimumOperations(a, n) { var ans = 1000000000; // The array c describes all the given // set of possible operations. var c = [-1, 0, 1]; // Size of c var possibilities = 3; // candidate answer var pos1 = -1, pos2 = -1; // Loop through all the permutations // of the first two elements. for(var i = 0; i < possibilities; i++) { for(var j = 0; j < possibilities; j++) { // a1 and a2 are the candidate first // two elements of the possible GP. var a1 = a[1] + c[i]; var a2 = a[2] + c[j]; // temp stores the current answer, // including the modification of // the first two elements. var temp = (Math.abs(a1 - a[1]) + Math.abs(a2 - a[2])); if (a1 == 0 || a2 == 0) continue; // Common ratio of the possible GP var r = a2 / a1; // To check if the chosen set is valid, // and id yes find the number of // operations it takes. for(var pos = 3; pos <= n; pos++) { // ai is value of a[i] according to // the assumed first two elements a1, a2 // ith element of an GP = a1*((a2-a1)^(i-1)) var ai = a1 * Math.pow(r, pos - 1); // Check for the "proposed" element to // be only differing by one if (a[pos] == ai) { continue; } else if (a[pos] + 1 == ai || a[pos] - 1 == ai) { temp++; } else { // Set the temporary ans temp = 1000000000; // To infinity and break break; } } // Update answer if (temp < ans) { ans = temp; pos1 = a1; pos2 = a2; } } } if (ans == -1) { document.write("-1"); return; } document.write("Minimum Number of " + "Operations are " + ans + "<br>"); var ans_pair = new pair( pos1, pos2 ); // Calling function to print the sequence construct(n, ans_pair); } // Driver Code // Array is 1-indexed, with a[0] = 0 // for the sake of simplicity var a = [ 0, 7, 20, 49, 125 ]; var n = a.length; // Function to print the minimum operations // and the sequence of elements findMinimumOperations(a, n - 1); // This code is contributed by rrrtnx </script>
Minimum Number of Operations are 2 The resultant sequence is: 8 20 50 125
Complejidad de tiempo : O (9 * N)
Publicación traducida automáticamente
Artículo escrito por AayushChaturvedi y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA