Números Giuga

Dado un número N , la tarea es verificar si N es un Número Giuga o no. Si N es un número Giuga , escriba «Sí» , de lo contrario, escriba «No» .

Un número de Giuga es un número compuesto N tal que p divide (N/p – 1) para  cada factor primo p de N.
 

Ejemplos:  

Entrada: N = 30 
Salida: Sí 
Explicación: 
30 es un número compuesto cuyos divisores primos son {2, 3, 5}, tal que 
2 divide 30/2 – 1 = 14, 
3 divide 30/3 – 1 = 9, y 
5 divide 30/5 – 1 = 5.

Entrada: N = 161 
Salida: No 

Enfoque: La idea es comprobar si N es un número compuesto o no. Si no es así, escriba «No». 
Si N es un número compuesto, encuentre los factores primos de un número y para cada factor primo p verifique si la condición p divide (n/p – 1) es cierta o no. Si la condición anterior es cierta, escriba «Sí» , de lo contrario, escriba «No» .

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if n is
// a composite number
bool isComposite(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
 
    // This is checked to skip
    // middle 5 numbers
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function to check if N is a
// Giuga Number
bool isGiugaNum(int n)
{
    // N should be composite to be
    // a Giuga Number
    if (!(isComposite(n)))
        return false;
 
    int N = n;
 
    // Print the number of 2s
    // that divide n
    while (n % 2 == 0) {
 
        if ((N / 2 - 1) % 2 != 0)
            return false;
 
        n = n / 2;
    }
 
    // N must be odd at this point.
    // So we can skip one element
    for (int i = 3; i <= sqrt(n);
         i = i + 2) {
 
        // While i divides n,
        // print i and divide n
        while (n % i == 0) {
            if ((N / i - 1) % i != 0)
                return false;
 
            n = n / i;
        }
    }
 
    // This condition is to handle
    // the case when n
    // is a prime number > 2
    if (n > 2)
        if ((N / n - 1) % n != 0)
            return false;
 
    return true;
}
 
// Driver Code
int main()
{
    // Given Number N
    int N = 30;
 
    // Function Call
    if (isGiugaNum(N))
        cout << "Yes";
    else
        cout << "No";
}

Java

// Java program for the above approach
class GFG{
 
// Function to check if n is
// a composite number
static boolean isComposite(int n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
 
    // This is checked to skip
    // middle 5 numbers
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return true;
 
    return false;
}
 
// Function to check if N is a
// Giuga Number
static boolean isGiugaNum(int n)
{
     
    // N should be composite to be
    // a Giuga Number
    if (!(isComposite(n)))
        return false;
 
    int N = n;
 
    // Print the number of 2s
    // that divide n
    while (n % 2 == 0)
    {
        if ((N / 2 - 1) % 2 != 0)
            return false;
        n = n / 2;
    }
 
    // N must be odd at this point.
    // So we can skip one element
    for(int i = 3; i <= Math.sqrt(n);
                   i = i + 2)
    {
        
       // While i divides n,
       // print i and divide n
       while (n % i == 0)
       {
           if ((N / i - 1) % i != 0)
               return false;
           n = n / i;
        } 
    }
     
    // This condition is to handle
    // the case when n
    // is a prime number > 2
    if (n > 2)
        if ((N / n - 1) % n != 0)
            return false;
             
    return true;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Number N
    int n = 30;
 
    // Function Call
    if (isGiugaNum(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by Pratima Pandey

Python3

# Python program for the above approach
import math
 
# Function to check if n is
# a composite number
def isComposite(n):
 
    # Corner cases
    if(n <= 1):
        return False
    if(n <= 3):
        return False
 
    # This is checked to skip
    # middle 5 numbers
    if(n % 2 == 0 or n % 3 == 0):
        return True
 
    i = 5
    while(i * i <= n):
        if(n % i == 0 or n % (i + 2) == 0):
            return True
        i += 6
    return False
 
# Function to check if N is a
# Giuga Number
def isGiugaNum(n):
 
    # N should be composite to be
    # a Giuga Number
    if(not(isComposite(n))):
        return False
    N = n
 
    # Print the number of 2s
    # that divide n
    while(n % 2 == 0):
        if((int(N / 2) - 1) % 2 != 0):
            return False
        n = int(n / 2)
 
    # N must be odd at this point.
    # So we can skip one element
    for i in range(3, int(math.sqrt(n)) + 1, 2):
         
        # While i divides n, 
           # print i and divide n
        while(n % i == 0):
            if((int(N / i) - 1) % i != 0):
                return False
            n = int(n / i)
 
    # This condition is to handle 
    # the case when n 
    # is a prime number > 2
    if(n > 2):
        if((int(N / n) - 1) % n != 0):
            return False
    return True
 
# Driver code 
 
# Given Number N
n = 30
if(isGiugaNum(n)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by avanitrachhadiya2155

C#

// C# program for the above approach
using System;
class GFG{
     
// Function to check if n is
// a composite number
static bool isComposite(int n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
     
    // This is checked to skip
    // middle 5 numbers
    if (n % 2 == 0 || n % 3 == 0)
        return true;
     
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return true;
     
    return false;
}
     
// Function to check if N is a
// Giuga Number
static bool isGiugaNum(int n)
{
     
    // N should be composite to be
    // a Giuga Number
    if (!(isComposite(n)))
        return false;
     
    int N = n;
     
    // Print the number of 2s
    // that divide n
    while (n % 2 == 0)
    {
        if ((N / 2 - 1) % 2 != 0)
            return false;
        n = n / 2;
    }
     
    // N must be odd at this point.
    // So we can skip one element
    for(int i = 3; i <= Math.Sqrt(n);
            i = i + 2)
    {
        
       // While i divides n,
       // print i and divide n
       while (n % i == 0)
       {
           if ((N / i - 1) % i != 0)
               return false;
           n = n / i;
       }
    }
     
    // This condition is to handle
    // the case when n
    // is a prime number > 2
    if (n > 2)
        if ((N / n - 1) % n != 0)
            return false;
     
    return true;
}
 
// Driver code
static void Main()
{
         
    // Given Number N
    int N = 30;
     
    // Function Call
    if (isGiugaNum(N))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by divyeshrabadiya07

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to check if n is
// a composite number
function isComposite(n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return false;
 
    // This is checked to skip
    // middle 5 numbers
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for(let i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return true;
 
    return false;
}
 
// Function to check if N is a
// Giuga Number
function isGiugaNum(n)
{
     
    // N should be composite to be
    // a Giuga Number
    if (!(isComposite(n)))
        return false;
 
    let N = n;
 
    // Print the number of 2s
    // that divide n
    while (n % 2 == 0)
    {
        if ((N / 2 - 1) % 2 != 0)
            return false;
             
        n = n / 2;
    }
 
    // N must be odd at this point.
    // So we can skip one element
    for(let i = 3;
            i <= Math.sqrt(n);
            i = i + 2)
    {
        
       // While i divides n,
       // print i and divide n
       while (n % i == 0)
       {
           if ((N / i - 1) % i != 0)
               return false;
                
           n = n / i;
        } 
    }
     
    // This condition is to handle
    // the case when n
    // is a prime number > 2
    if (n > 2)
        if ((N / n - 1) % n != 0)
            return false;
             
    return true;
}
 
// Driver Code
 
// Given Number N
let n = 30;
 
// Function Call
if (isGiugaNum(n))
    document.write("Yes");
else
    document.write("No");
     
// This code is contributed by susmitakundugoaldanga     
 
</script>
Producción: 

Yes

 

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *