Te han dado una serie 1 + 1/2^2 + 1/3^3 + …..+ 1/n^n, encuentra la suma de la serie hasta el término n.
Ejemplos:
Entrada: n = 3
Salida: 1.28704
Explicación: 1 + 1/2^2 + 1/3^3
Entrada: n = 5
Salida: 1.29126
Explicación: 1 + 1/2^2 + 1/3^3 + 1/4^4 + 1/5^5
Usamos la función de potencia para calcular la potencia.
C++
// C++ program to calculate the following series #include <bits/stdc++.h> using namespace std; // Function to calculate the following series double Series(int n) { int i; double sums = 0.0, ser; for(i = 1; i <= n; ++i) { ser = 1 / pow(i, i); sums += ser; } return sums; } // Driver Code int main() { int n = 3; double res = Series(n); cout << res; return 0; } // This code is contributed by Ankita saini
C
// C program to calculate the following series #include <math.h> #include <stdio.h> // Function to calculate the following series double Series(int n) { int i; double sums = 0.0, ser; for (i = 1; i <= n; ++i) { ser = 1 / pow(i, i); sums += ser; } return sums; } // Driver Code int main() { int n = 3; double res = Series(n); printf("%.5f", res); return 0; }
Java
// Java program to calculate the following series import java.io.*; class Maths { // Function to calculate the following series static double Series(int n) { int i; double sums = 0.0, ser; for (i = 1; i <= n; ++i) { ser = 1 / Math.pow(i, i); sums += ser; } return sums; } // Driver Code public static void main(String[] args) { int n = 3; double res = Series(n); res = Math.round(res * 100000.0) / 100000.0; System.out.println(res); } }
Python3
# Python program to calculate the following series def Series(n): sums = 0.0 for i in range(1, n + 1): ser = 1 / (i**i) sums += ser return sums # Driver Code n = 3 res = round(Series(n), 5) print(res)
C#
// C# program to calculate the following series using System; class Maths { // Function to calculate the following series static double Series(int n) { int i; double sums = 0.0, ser; for (i = 1; i <= n; ++i) { ser = 1 / Math.Pow(i, i); sums += ser; } return sums; } // Driver Code public static void Main() { int n = 3; double res = Series(n); res = Math.Round(res * 100000.0) / 100000.0; Console.Write(res); } } /*This code is contributed by vt_m.*/
PHP
<?php // PHP program to calculate // the following series // Function to calculate // the following series function Series($n) { $i; $sums = 0.0; $ser; for ($i = 1; $i <= $n; ++$i) { $ser = 1 / pow($i, $i); $sums += $ser; } return $sums; } // Driver Code $n = 3; $res = Series($n); echo $res; // This code is contributed by Vishal Tripathi. ?>
Javascript
<script> // Javascript program to calculate // the following series function Series(n) { let sums = 0.0; for(let i = 1; i < n + 1; i++) { ser = 1 / Math.pow(i, i); sums += ser; } return sums; } // Driver Code let n = 3; let res = Math.round(Series(n) * 100000) / 100000; document.write(res); // This code is contributed by rohitsingh07052 </script>
Producción:
1.28704
Complejidad de tiempo: O(n)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Chinmoy Lenka y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA