requisitos previos:
Dado un valor n, la tarea es imprimir series de números pentatópicos hasta el término n .
Ejemplos:
Input: 5 Output: 1 5 15 35 70 Input: 10 Output: 1 5 15 35 70 126 210 330 495 715
Método 1: Uso de series de números tetraédricos:
este problema se puede resolver fácilmente con el hecho de que el N número del pentátopo es igual a la suma de los primeros N números tetraédricos.
Echemos un vistazo a la serie de números pentatópicos y tetraédricos.
Para n = 5
Números tetraédricos = 1, 4, 10, 20, 35
Prefijo Suma de números tetraédricos para cada término: (1), (1 + 4), (1 + 4 + 10), (1 + 4 + 10 + 20), (1 + 4 + 10 + 20 + 35)
Entonces, los números del pentátopo son 1, 5, 15, 35, 70
Calcule el N número tetraédrico usando la fórmula:
Por lo tanto, imprima la serie de Números pentatópicos generando números tetraédricos y sumándolos con la suma de todos los Números tetraédricos generados previamente.
A continuación se muestra la implementación del enfoque anterior:
CPP
// C++ program to generate Pentatope // Number series #include <bits/stdc++.h> using namespace std; // Function to generate nth tetrahedral number int findTetrahedralNumber(int n) { return ((n * (n + 1) * (n + 2)) / 6); } // Function to print pentatope number // series upto nth term. void printSeries(int n) { // Initialize prev as 0. It store the // sum of all previously generated // pentatope numbers int prev = 0; int curr; // Loop to print pentatope series for (int i = 1; i <= n; i++) { // Find ith tetrahedral number curr = findTetrahedralNumber(i); // Add ith tetrahedral number to // sum of all previously generated // tetrahedral number to get ith // pentatope number curr = curr + prev; cout << curr << " "; // Update sum of all previously // generated tetrahedral number prev = curr; } } // Driver code int main() { int n = 10; // Function call to print pentatope // number series printSeries(n); return 0; }
Java
// Java program to generate Pentatope // Number series import java.io.*; class GFG { // Function to generate nth tetrahedral number static int findTetrahedralNumber(int n) { return ((n * (n + 1) * (n + 2)) / 6); } // Function to print pentatope number // series upto nth term. static void printSeries(int n) { // Initialize prev as 0. It store the // sum of all previously generated // pentatope numbers int prev = 0; int curr; // Loop to print pentatope series for (int i = 1; i <= n; i++) { // Find ith tetrahedral number curr = findTetrahedralNumber(i); // Add ith tetrahedral number to // sum of all previously generated // tetrahedral number to get ith // pentatope number curr = curr + prev; System.out.print(curr + " "); // Update sum of all previously // generated tetrahedral number prev = curr; } } // Driver code public static void main (String[] args) { int n = 10; // Function call to print pentatope // number series printSeries(n); } }
python3
# Python program to generate Pentatope # Number series # Function to generate nth tetrahedral number def findTetrahedralNumber(n) : return (int((n * (n + 1) * (n + 2)) / 6)) # Function to print pentatope number # series upto nth term. def printSeries(n) : # Initialize prev as 0. It store the # sum of all previously generated # pentatope numbers prev = 0 # Loop to print pentatope series for i in range(1, n + 1) : # Find ith tetrahedral number curr = findTetrahedralNumber(i) # Add ith tetrahedral number to # sum of all previously generated # tetrahedral number to get ith # pentatope number curr = curr + prev; print(curr, end=' ') # Update sum of all previously # generated tetrahedral number prev = curr # Driver code n = 10 # Function call to print pentatope # number series printSeries(n)
C#
// C# program to generate Pentatope // Number series using System; public class GFG { // Function to generate nth tetrahedral number static int findTetrahedralNumber(int n) { return ((n * (n + 1) * (n + 2)) / 6); } // Function to print pentatope number // series upto nth term. static void printSeries(int n) { // Initialize prev as 0. It store the // sum of all previously generated // pentatope numbers int prev = 0; int curr; // Loop to print pentatope series for (int i = 1; i <= n; i++) { // Find ith tetrahedral number curr = findTetrahedralNumber(i); // Add ith tetrahedral number to // sum of all previously generated // tetrahedral number to get ith // pentatope number curr = curr + prev; Console.Write(curr + " "); // Update sum of all previously // generated tetrahedral number prev = curr; } } // Driver code static public void Main () { int n = 10; // Function call to print pentatope // number series printSeries(n); } }
PHP
<?php // PHP program to generate Pentatope // Number series // Function to generate nth tetrahedral number function findTetrahedralNumber($n) { return (($n * ($n + 1) * ($n + 2)) / 6); } // Function to print pentatope number // series upto nth term. function printSeries($n) { // Initialize prev as 0. It store the // sum of all previously generated // pentatope numbers $prev = 0; $curr; // Loop to print pentatope series for ($i = 1; $i <= $n; $i++) { // Find ith tetrahedral number $curr = findTetrahedralNumber($i); // Add ith tetrahedral number to // sum of all previously generated // tetrahedral number to get ith // pentatope number $curr = $curr + $prev; echo($curr . " "); // Update sum of all previously // generated tetrahedral number $prev = $curr; } } // Driver code $n = 10; // Function call to print pentatope // number series printSeries($n); ?>
Javascript
<script> // JavaScript program to generate Pentatope // Number series // Function to generate nth tetrahedral number function findTetrahedralNumber(n) { return ((n * (n + 1) * (n + 2)) / 6); } // Function to print pentatope number // series upto nth term. function printSeries(n) { // Initialize prev as 0. It store the // sum of all previously generated // pentatope numbers let prev = 0; let curr; // Loop to print pentatope series for (let i = 1; i <= n; i++) { // Find ith tetrahedral number curr = findTetrahedralNumber(i); // Add ith tetrahedral number to // sum of all previously generated // tetrahedral number to get ith // pentatope number curr = curr + prev; document.write(curr+" "); // Update sum of all previously // generated tetrahedral number prev = curr; } } // Driver code let n = 10; // Function call to print pentatope // number series printSeries(n); // This code is contributed by sravan kumar </script>
1 5 15 35 70 126 210 330 495 715
Complejidad de tiempo: O(n), donde n representa el entero dado.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.
Método 2: Uso de la fórmula del número de pentátopo:
La fórmula para encontrar el número N de pentátopo A
continuación se muestra la implementación requerida:
CPP
// C++ program to print Pentatope number series. #include <bits/stdc++.h> using namespace std; // Function to print pentatope series up to nth term void printSeries(int n) { // Loop to print pentatope number series for (int i = 1; i <= n; i++) { // calculate and print ith pentatope number int num = (i * (i + 1) * (i + 2) * (i + 3) / 24); cout << num << " "; } } // Driver code int main() { int n = 10; // Function call to print pentatope number series printSeries(n); return 0; }
Java
// Java program to print Pentatope number series. import java.io.*; class GFG { // Function to print pentatope series up to nth term static void printSeries(int n) { // Loop to print pentatope number series for (int i = 1; i <= n; i++) { // calculate and print ith pentatope number int num = (i * (i + 1) * (i + 2) * (i + 3) / 24); System.out.print(num + " "); } } // Driver code public static void main (String[] args) { int n = 10; // Function call to print pentatope number series printSeries(n); } }
python3
# Python program to print Pentatope number series. # Function to print pentatope series up to nth term def printSeries(n) : # Loop to print pentatope number series for i in range(1, n + 1) : # calculate and print ith pentatope number num = int(i * (i + 1) * (i + 2) * (i + 3) // 24) print(num, end=' '); # Driver code n = 10 # Function call to print pentatope number series printSeries(n)
C#
// C# program to print Pentatope number series. using System; public class GFG { // Function to print pentatope series up to nth term static void printSeries(int n) { // Loop to print pentatope number series for (int i = 1; i <= n; i++) { // calculate and print ith pentatope number int num = (i * (i + 1) * (i + 2) * (i + 3) / 24); Console.Write(num + " "); } } // Driver code static public void Main () { int n = 10; // Function call to print pentatope number series printSeries(n); } }
PHP
<?php // PHP program to print Pentatope number series. // Function to print pentatope series up to nth term function printSeries($n) { // Loop to print pentatope number series for ($i = 1; $i <= $n; $i++) { // calculate and print ith pentatope number $num = ($i * ($i + 1) * ($i + 2) * ($i + 3) / 24); echo($num . " "); } } // Driver code $n = 10; // Function call to print pentatope number series printSeries($n); ?>
Javascript
<script> // Javascript program to print Pentatope number series. // Function to print pentatope series up to nth term function printSeries(n) { // Loop to print pentatope number series for (let i = 1; i <= n; i++) { // calculate and print ith pentatope number num = (i * (i + 1) * (i + 2) * (i + 3) / 24); document.write(num+" "); } } // Driver code let n = 10; // Function call to print pentatope number series printSeries(n); // This code is contributed by sravan kumar </script>
1 5 15 35 70 126 210 330 495 715
Complejidad de tiempo: O(n), donde n representa el entero dado.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.