Dados dos enteros positivos L y R que representan un rango y dos enteros positivos más d y K . La tarea es encontrar el conteo de números en el rango donde el dígito d aparece exactamente K veces.
Ejemplos:
Entrada: L = 11, R = 100, d = 2, k = 1
Salida: 17
Los números requeridos son 12, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62 , 72, 82 y 92.
Entrada: L = 95, R = 1005, d = 0, k = 2
Salida: 14
Prerrequisitos: Dígito DP
Enfoque: en primer lugar, si podemos contar los números requeridos hasta R, es decir, en el rango [0, R], podemos llegar fácilmente a nuestra respuesta en el rango [L, R] resolviendo de cero a R y luego restando el respuesta que obtenemos después de resolver de cero a L – 1. Ahora, necesitamos definir los estados DP.
Estados DP :
- Dado que podemos considerar nuestro número como una secuencia de dígitos, un estado es la posición en la que nos encontramos actualmente. Esta posición puede tener valores de 0 a 18 si estamos tratando con números hasta 10 18 . En cada llamada recursiva, tratamos de construir la secuencia de izquierda a derecha colocando un dígito del 0 al 9.
- El segundo estado es el conteo que define el número de veces que hemos colocado el dígito d hasta ahora.
- Otro estado es la variable booleana tight que indica que el número que estamos tratando de construir ya se ha vuelto más pequeño que R, de modo que en las próximas llamadas recursivas podemos colocar cualquier dígito del 0 al 9. Si el número no se ha vuelto más pequeño, el límite máximo de El dígito que podemos colocar es el dígito en la posición actual en R.
- El último estado también es una variable booleana nonz que ayuda a considerar la situación si hay ceros a la izquierda en el número que estamos construyendo, no necesitamos contarlos.
En la llamada recursiva final, cuando estamos en la última posición si el recuento del dígito d es igual a K, devuelve 1; de lo contrario, devuelve 0.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP Program to find the count of // numbers in a range where digit d // occurs exactly K times #include <bits/stdc++.h> using namespace std; const int M = 20; // states - position, count, tight, nonz int dp[M][M][2][2]; // d is required digit and K is occurrence int d, K; // This function returns the count of // required numbers from 0 to num int count(int pos, int cnt, int tight, int nonz, vector<int> num) { // Last position if (pos == num.size()) { if (cnt == K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][cnt][tight][nonz] != -1) return dp[pos][cnt][tight][nonz]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight ? 9 : num[pos]); for (int dig = 0; dig <= limit; dig++) { int currCnt = cnt; // Nonz is true if we placed a non // zero digit at the starting of // the number if (dig == d) { if (d != 0 || (!d && nonz)) currCnt++; } int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, currCnt, currTight, nonz || (dig != 0), num); } return dp[pos][cnt][tight][nonz] = ans; } // Function to convert x into its digit vector and uses // count() function to return the required count int solve(int x) { vector<int> num; while (x) { num.push_back(x % 10); x /= 10; } reverse(num.begin(), num.end()); // Initialize dp memset(dp, -1, sizeof(dp)); return count(0, 0, 0, 0, num); } // Driver Code to test above functions int main() { int L = 11, R = 100; d = 2, K = 1; cout << solve(R) - solve(L - 1) << endl; return 0; }
Java
// Java Program to find the count of // numbers in a range where digit d // occurs exactly K times import java.util.*; class Solution { static final int M = 20; // states - position, count, tight, nonz static int dp[][][][]= new int[M][M][2][2]; // d is required digit and K is occurrence static int d, K; // This function returns the count of // required numbers from 0 to num static int count(int pos, int cnt, int tight, int nonz, Vector<Integer> num) { // Last position if (pos == num.size()) { if (cnt == K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][cnt][tight][nonz] != -1) return dp[pos][cnt][tight][nonz]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = ((tight !=0)? 9 : num.get(pos)); for (int dig = 0; dig <= limit; dig++) { int currCnt = cnt; // Nonz is true if we placed a non // zero digit at the starting of // the number if (dig == d) { if (d != 0 || (d==0 && nonz!=0)) currCnt++; } int currTight = tight; // At this position, number becomes // smaller if (dig < num.get(pos)) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, currCnt, currTight, (dig != 0?1:0), num); } return dp[pos][cnt][tight][nonz] = ans; } // Function to convert x into its digit vector and uses // count() function to return the required count static int solve(int x) { Vector<Integer> num= new Vector<Integer>(); while (x!=0) { num.add(x % 10); x /= 10; } Collections.reverse(num); // Initialize dp for(int i=0;i<M;i++) for(int j=0;j<M;j++) for(int k=0;k<2;k++) for(int l=0;l<2;l++) dp[i][j][k][l]=-1; return count(0, 0, 0, 0, num); } // Driver Code to test above functions public static void main(String args[]) { int L = 11, R = 100; d = 2; K = 1; System.out.print( solve(R) - solve(L - 1) ); } } //contributed by Arnab Kundu
Python3
# Python Program to find the count of # numbers in a range where digit d # occurs exactly K times M = 20 # states - position, count, tight, nonz dp = [] # d is required digit and K is occurrence d, K = None, None # This function returns the count of # required numbers from 0 to num def count(pos, cnt, tight, nonz, num: list): # Last position if pos == len(num): if cnt == K: return 1 return 0 # If this result is already computed # simply return it if dp[pos][cnt][tight][nonz] != -1: return dp[pos][cnt][tight][nonz] ans = 0 # Maximum limit upto which we can place # digit. If tight is 1, means number has # already become smaller so we can place # any digit, otherwise num[pos] limit = 9 if tight else num[pos] for dig in range(limit + 1): currCnt = cnt # Nonz is true if we placed a non # zero digit at the starting of # the number if dig == d: if d != 0 or not d and nonz: currCnt += 1 currTight = tight # At this position, number becomes # smaller if dig < num[pos]: currTight = 1 # Next recursive call, also set nonz # to 1 if current digit is non zero ans += count(pos + 1, currCnt, currTight, (nonz or dig != 0), num) dp[pos][cnt][tight][nonz] = ans return dp[pos][cnt][tight][nonz] # Function to convert x into its digit vector and uses # count() function to return the required count def solve(x): global dp, K, d num = [] while x: num.append(x % 10) x //= 10 num.reverse() # Initialize dp dp = [[[[-1, -1] for i in range(2)] for j in range(M)] for k in range(M)] return count(0, 0, 0, 0, num) # Driver Code if __name__ == "__main__": L = 11 R = 100 d = 2 K = 1 print(solve(R) - solve(L - 1)) # This code is contributed by # sanjeev2552
C#
// C# Program to find the count of // numbers in a range where digit d // occurs exactly K times using System; using System.Collections.Generic; class GFG { static readonly int M = 20; // states - position, count, tight, nonz static int [,,,]dp= new int[M, M, 2, 2]; // d is required digit and K is occurrence static int d, K; // This function returns the count of // required numbers from 0 to num static int count(int pos, int cnt, int tight, int nonz, List<int> num) { // Last position if (pos == num.Count) { if (cnt == K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos, cnt, tight, nonz] != -1) return dp[pos, cnt, tight, nonz]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = ((tight != 0) ? 9 : num[pos]); for (int dig = 0; dig <= limit; dig++) { int currCnt = cnt; // Nonz is true if we placed a non // zero digit at the starting of // the number if (dig == d) { if (d != 0 || (d == 0 && nonz != 0)) currCnt++; } int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, currCnt, currTight, (dig != 0 ? 1 : 0), num); } return dp[pos, cnt, tight, nonz] = ans; } // Function to convert x into its // digit vector and uses count() // function to return the required count static int solve(int x) { List<int> num = new List<int>(); while (x != 0) { num.Add(x % 10); x /= 10; } num.Reverse(); // Initialize dp for(int i = 0; i < M; i++) for(int j = 0; j < M; j++) for(int k = 0; k < 2; k++) for(int l = 0; l < 2; l++) dp[i, j, k, l]=-1; return count(0, 0, 0, 0, num); } // Driver Code public static void Main() { int L = 11, R = 100; d = 2; K = 1; Console.Write( solve(R) - solve(L - 1) ); } } // This code is contributed by Rajput-JI
Javascript
<script> // JavaScript Program to find the count of // numbers in a range where digit d // occurs exactly K times var M = 20; // states - position, count, tight, nonz var dp = Array.from(Array(M), ()=>Array(M)); // d is required digit and K is occurrence var d, K; // This function returns the count of // required numbers from 0 to num function count( pos, cnt, tight, nonz, num) { // Last position if (pos == num.length) { if (cnt == K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][cnt][tight][nonz] != -1) return dp[pos][cnt][tight][nonz]; var ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] var limit = (tight ? 9 : num[pos]); for (var dig = 0; dig <= limit; dig++) { var currCnt = cnt; // Nonz is true if we placed a non // zero digit at the starting of // the number if (dig == d) { if (d != 0 || (!d && nonz)) currCnt++; } var currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, currCnt, currTight, nonz || (dig != 0?1:0), num); } return dp[pos][cnt][tight][nonz] = ans; } // Function to convert x into its digit vector and uses // count() function to return the required count function solve(x) { var num = []; while (x) { num.push(x % 10); x = parseInt(x/10); } num.reverse(); for(var i =0; i<M; i++) for(var j =0; j<M; j++) dp[i][j] = Array.from(Array(2), ()=>Array(2).fill(-1)) return count(0, 0, 0, 0, num); } // Driver Code to test above functions var L = 11, R = 100; d = 2, K = 1; document.write( solve(R) - solve(L - 1)); </script>
17
Publicación traducida automáticamente
Artículo escrito por Nishant Tanwar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA