Dado un entero positivo N . La tarea es encontrar 1 2 + 2 2 + 3 2 + ….. + N 2 .
Ejemplos:
Input : N = 4 Output : 30 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 Input : N = 5 Output : 55
Método 1: O(N) La idea es ejecutar un ciclo de 1 an y para cada i, 1 <= i <= n, encontrar i 2 para sumar.
A continuación se muestra la implementación de este enfoque.
C++
// CPP Program to find sum of square of first n natural numbers #include <bits/stdc++.h> using namespace std; // Return the sum of square of first n natural numbers int squaresum(int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program int main() { int n = 4; cout << squaresum(n) << endl; return 0; }
Java
// Java Program to find sum of // square of first n natural numbers import java.io.*; class GFG { // Return the sum of square of first n natural numbers static int squaresum(int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program public static void main(String args[])throws IOException { int n = 4; System.out.println(squaresum(n)); } } /*This code is contributed by Nikita Tiwari.*/
Python3
# Python3 Program to # find sum of square # of first n natural # numbers # Return the sum of # square of first n # natural numbers def squaresum(n) : # Iterate i from 1 # and n finding # square of i and # add to sum. sm = 0 for i in range(1, n+1) : sm = sm + (i * i) return sm # Driven Program n = 4 print(squaresum(n)) # This code is contributed by Nikita Tiwari.*/
C#
// C# Program to find sum of // square of first n natural numbers using System; class GFG { // Return the sum of square of first // n natural numbers static int squaresum(int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); } } /* This code is contributed by vt_m.*/
PHP
<?php // PHP Program to find sum of // square of first n natural numbers // Return the sum of square of // first n natural numbers function squaresum($n) { // Iterate i from 1 and n // finding square of i and // add to sum. $sum = 0; for ($i = 1; $i <= $n; $i++) $sum += ($i * $i); return $sum; } // Driven Code $n = 4; echo(squaresum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // Javascript Program to find sum of square of first n natural numbers // Return the sum of square of first n natural numbers function squaresum(n) { // Iterate i from 1 and n // finding square of i and add to sum. let sum = 0; for (let i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program let n = 4; document.write(squaresum(n) + "<br>"); // This code is contributed by Mayank Tyagi </script>
Producción :
30
Complejidad de tiempo: O(n)
Espacio Auxiliar: O(1)
Método 2: O(1)
Suma de cuadrados de los primeros N números naturales = (N*(N+1)*(2*N+1))/6
Por ejemplo
, para N=4, Suma = ( 4 * ( 4 + 1 ) * ( 2 * 4 + 1 ) ) / 6
= 180 / 6
= 30
Para N=5, Suma = ( 5 * ( 5 + 1 ) * ( 2 * 5 + 1 ) ) / 6
= 55
Prueba:
We know, (k + 1)3 = k3 + 3 * k2 + 3 * k + 1 We can write the above identity for k from 1 to n: 23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1) 33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2) 43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3) 53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4) ... n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1) (n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n) Putting equation (n - 1) in equation n, (n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1 = (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1 By putting all equation, we get (n + 1)3 = 13 + 3 * Σ k2 + 3 * Σ k + Σ 1 n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * Σ k2 + 3 * (n * (n + 1))/2 + n n3 + 3 * n2 + 3 * n = 3 * Σ k2 + 3 * (n * (n + 1))/2 + n n3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * Σ k2 n * (n + 1) * (n + 2 - 3/2) = 3 * Σ k2 n * (n + 1) * (2 * n + 1)/2 = 3 * Σ k2 n * (n + 1) * (2 * n + 1)/6 = Σ k2
A continuación se muestra la implementación de este enfoque:
C++
// CPP Program to find sum // of square of first n // natural numbers #include <bits/stdc++.h> using namespace std; // Return the sum of square of // first n natural numbers int squaresum(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driven Program int main() { int n = 4; cout << squaresum(n) << endl; return 0; }
Java
// Java Program to find sum // of square of first n // natural numbers import java.io.*; class GFG { // Return the sum of square // of first n natural numbers static int squaresum(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driven Program public static void main(String args[]) throws IOException { int n = 4; System.out.println(squaresum(n)); } } /*This code si contributed by Nikita Tiwari.*/
Python3
# Python3 Program to # find sum of square # of first n natural # numbers # Return the sum of # square of first n # natural numbers def squaresum(n) : return (n * (n + 1) * (2 * n + 1)) // 6 # Driven Program n = 4 print(squaresum(n)) #This code is contributed by Nikita Tiwari.
C#
// C# Program to find sum // of square of first n // natural numbers using System; class GFG { // Return the sum of square // of first n natural numbers static int squaresum(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driven Program public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); } } /*This code is contributed by vt_m.*/
PHP
<?php // PHP Program to find sum // of square of first n // natural numbers // Return the sum of square of // first n natural numbers function squaresum($n) { return ($n * ($n + 1) * (2 * $n + 1)) / 6; } // Driven Code $n = 4; echo(squaresum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // Javascript program to find sum // of square of first n // natural numbers // Return the sum of square of // first n natural numbers function squaresum(n) { return parseInt((n * (n + 1) * (2 * n + 1)) / 6); } // Driver code let n = 4; document.write(squaresum(n)); // This code is contributed by rishavmahato348 </script>
Producción :
30
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra
Evitar el desbordamiento temprano:
para n grande, el valor de (n * (n + 1) * (2 * n + 1)) se desbordaría. Podemos evitar el desbordamiento hasta cierto punto utilizando el hecho de que n*(n+1) debe ser divisible por 2.
C++
// CPP Program to find sum of square of first // n natural numbers. This program avoids // overflow upto some extent for large value // of n. #include <bits/stdc++.h> using namespace std; // Return the sum of square of first n natural // numbers int squaresum(int n) { return (n * (n + 1) / 2) * (2 * n + 1) / 3; } // Driven Program int main() { int n = 4; cout << squaresum(n) << endl; return 0; }
Python3
# Python Program to find sum of square of first # n natural numbers. This program avoids # overflow upto some extent for large value # of n.y def squaresum(n): return (n * (n + 1) / 2) * (2 * n + 1) / 3 # main() n = 4 print(squaresum(n)); # Code Contributed by Mohit Gupta_OMG <(0_o)>
Java
// Java Program to find sum of square of first // n natural numbers. This program avoids // overflow upto some extent for large value // of n. import java.io.*; import java.util.*; class GFG { // Return the sum of square of first n natural // numbers public static int squaresum(int n) { return (n * (n + 1) / 2) * (2 * n + 1) / 3; } public static void main (String[] args) { int n = 4; System.out.println(squaresum(n)); } } // Code Contributed by Mohit Gupta_OMG <(0_o)>
C#
// C# Program to find sum of square of first // n natural numbers. This program avoids // overflow upto some extent for large value // of n. using System; class GFG { // Return the sum of square of // first n natural numbers public static int squaresum(int n) { return (n * (n + 1) / 2) * (2 * n + 1) / 3; } // Driver Code public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); } } // This Code is Contributed by vt_m.>
PHP
<?php // PHP Program to find // sum of square of first // n natural numbers. // This program avoids // overflow upto some // extent for large value // of n. // Return the sum of square // of first n natural numbers function squaresum($n) { return ($n * ($n + 1) / 2) * (2 * $n + 1) / 3; } // Driver Code $n = 4; echo squaresum($n) ; // This code is contributed by vt_m. ?>
Javascript
<script> // javascript Program to find sum of square of first // n natural numbers. This program avoids // overflow upto some extent for large value // of n. // Return the sum of square of first n natural // numbers function squaresum( n) { return (n * (n + 1) / 2) * (2 * n + 1) / 3; } // Driven Program let n = 4; document.write(squaresum(n)); // This code contributed by aashish1995 </script>
Producción:
30
Complejidad temporal: O(1) desde que se realizan operaciones constantes
Complejidad del espacio : O(1) ya que usa variables constantes