Encuentra la suma hasta n términos de la serie: 1.2.3 + 2.3.4 + … + n(n+1)(n+2). En este 1.2.3 representan el primer término y 2.3.4 representan el segundo término.
Ejemplos:
Input : 2 Output : 30 1.2.3 + 2.3.4 = 6 + 24 = 30 Input : 3 Output : 90
Enfoque simple Ejecutamos un ciclo para i = 1 an, y encontramos la suma de (i)*(i+1)*(i+2).
Y al final mostrar la suma.
C++
// CPP program to find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... #include <bits/stdc++.h> using namespace std; int sumofseries(int n) { int res = 0; for (int i = 1; i <= n; i++) res += (i) * (i + 1) * (i + 2); return res; } // Driver Code int main() { cout << sumofseries(3) << endl; return 0; }
Java
// Java program to find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... import java.io.*; import java.math.*; class GFG { static int sumofseries(int n) { int res = 0; for (int i = 1; i <= n; i++) res += (i) * (i + 1) * (i + 2); return res; } // Driver Code public static void main(String[] args) { System.out.println(sumofseries(3)); } }
Python3
# Python 3 program to find sum of the series # 1.2.3 + 2.3.4 + 3.4.5 + ... def sumofseries(n): res = 0 for i in range(1, n+1): res += (i) * (i + 1) * (i + 2) return res # Driver Program print(sumofseries(3)) # This code is contributed # by Smitha Dinesh Semwal
C#
// Java program to find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... using System; class GFG { static int sumofseries(int n) { int res = 0; for (int i = 1; i <= n; i++) res += (i) * (i + 1) * (i + 2); return res; } // Driver Code public static void Main() { Console.WriteLine(sumofseries(3)); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to find // sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... function sumofseries($n) { $res = 0; for ($i = 1; $i <= $n; $i++) $res += ($i) * ($i + 1) * ($i + 2); return $res; } // Driver Code echo sumofseries(3); //This code is contributed by anuj_67. ?>
Javascript
<script> // JavaScript program to find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... function sumofseries(n) { let res = 0; for (let i = 1; i <= n; i++) res += (i) * (i + 1) * (i + 2); return res; } // Driver Code document.write(sumofseries(3)); // This code is contributed by code_hunt. </script>
90
Complexity : O(N)
Enfoque eficiente
Usando Efficient Approach sabemos que tenemos que encontrar = suma de ((n)*(n+1)*(n+2))
S n = sumatoria[ (n)*(n+1)*(n+2) ]
S n = sumatoria [n 3 + 2*n 2 + n 2 + 2*n]
Sabemos que la suma de cubos de números naturales es (n*(n+1))/2) 2 , la suma de los cuadrados de los números naturales es n * (n + 1) * (2n + 1) / 6 y la suma de los primeros n números naturales es n(n+1) /2
S n = ((n*(n+1))/2) 2 + 3((n)*(n+1)*(2*n+1)/6) + 2*((n)* (n+1)/2)
Entonces, al evaluar lo anterior obtenemos,
S n = (n*(n+1)*(n+2)*(n+3)/4)
Por lo tanto, tiene un O(1) complejidad.
C++
// Efficient CPP program to // find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + ... #include <bits/stdc++.h> using namespace std; // function to calculate // sum of series int sumofseries(int n) { return (n * (n + 1) * (n + 2) * (n + 3) / 4); } // Driver Code int main() { cout << sumofseries(3) << endl; return 0; }
Java
// Efficient Java program to // find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + .. import java.io.*; import java.math.*; class GFG { static int sumofseries(int n) { return (n * (n + 1) * (n + 2) * (n + 3) / 4); } // Driver Code public static void main(String[] args) { System.out.println(sumofseries(3)); } }
Python3
# Efficient CPP program to find sum of the # series 1.2.3 + 2.3.4 + 3.4.5 + ... # function to calculate sum of series def sumofseries(n): return int(n * (n + 1) * (n + 2) * (n + 3) / 4) # Driver program print(sumofseries(3)) # This code is contributed # by Smitha Dinesh Semwal
C#
// Efficient C# program to // find sum of the series // 1.2.3 + 2.3.4 + 3.4.5 + .. using System; class GFG { static int sumofseries(int n) { return (n * (n + 1) * (n + 2) * (n + 3) / 4); } // Driver Code public static void Main() { Console.WriteLine(sumofseries(3)); } } // This code is contributed by anuj_67.
PHP
<?php // Efficient CPP program // to find sum of the // series 1.2.3 + 2.3.4 // + 3.4.5 + ... // function to calculate // sum of series function sumofseries($n) { return ($n * ($n + 1) * ($n + 2) * ($n + 3) / 4); } // Driver Code echo sumofseries(3); // This code is contributed by anuj_67. ?>
Javascript
<script> // Efficient Javascript program // to find sum of the // series 1.2.3 + 2.3.4 // + 3.4.5 + ... // function to calculate // sum of series function sumofseries(n) { return (n * (n + 1) * (n + 2) * (n + 3) / 4); } // Driver Code document.write(sumofseries(3)); // This code is contributed by gfgking </script>
90
Complejidad de tiempo : O(1)
Publicación traducida automáticamente
Artículo escrito por Manish_100 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA