Escriba un programa para encontrar la suma de cuartas potencias de los primeros n números naturales 1 4 + 2 4 + 3 4 + 4 4 + …….+ n 4 hasta el n-ésimo término.
Ejemplos:
Input : 4 Output : 354 14 + 24 + 34 + 44 = 354 Input : 6 Output : 2275 14 + 24 + 34 + 44+ 54+ 64 = 2275
Enfoque ingenuo: encontrar simplemente las cuartas potencias de los primeros n números naturales es iterar un ciclo de 1 a n veces. como supongamos n=4.
(1*1*1*1)+(2*2*2*2)+(3*3*3*3)+(4*4*4*4) = 354
C++
// CPP Program to find the sum of forth powers // of first n natural numbers #include <bits/stdc++.h> using namespace std; // Return the sum of forth power of first n // natural numbers long long int fourthPowerSum(int n) { long long int sum = 0; for (int i = 1; i <= n; i++) sum = sum + (i * i * i * i); return sum; } // Driven Program int main() { int n = 6; cout << fourthPowerSum(n) << endl; return 0; }
Java
// Java Program to find the // sum of forth powers of // first n natural numbers import java.io.*; import java.util.*; class GFG { // Return the sum of forth // power of first n natural // numbers static long fourthPowerSum(int n) { long sum = 0; for (int i = 1; i <= n; i++) sum = sum + (i * i * i * i); return sum; } public static void main (String[] args) { int n = 6; System.out.println(fourthPowerSum(n)); } } // This code is contributed by Gitanjali.
Python3
# Python3 Program to find the # sum of forth powers of first # n natural numbers import math # Return the sum of forth power of # first n natural numbers def fourthPowerSum( n): sum = 0 for i in range(1, n+1) : sum = sum + (i * i * i * i) return sum # Driver method n=6 print (fourthPowerSum(n)) # This code is contributed by Gitanjali.
C#
// C# program to find the // sum of forth powers of // first n natural numbers using System; class GFG { // Return the sum of forth power // of first n natural numbers static long fourthPowerSum(int n) { long sum = 0; for (int i = 1; i <= n; i++) sum = sum + (i * i * i * i); return sum; } public static void Main () { int n = 6; Console.WriteLine(fourthPowerSum(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find th // sum of fourth powers // of first n natural numbers // Return the sum of fourth // power of first n // natural numbers function fourthPowerSum($n) { $sum = 0; for ($i = 1; $i <= $n; $i++) $sum = $sum + ($i * $i * $i * $i); return $sum; } // Driver Code $n = 6; echo(fourthPowerSum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript Program to find the sum of forth powers // of first n natural numbers // Return the sum of forth power of first n // natural numbers function fourthPowerSum( n) { let sum = 0; for (let i = 1; i <= n; i++) sum = sum + (i * i * i * i); return sum; } // Driven Program let n = 6; document.write(fourthPowerSum(n)); // This code contributed by aashish1995 </script>
Producción:
2275
Análisis de
complejidad: Complejidad de tiempo : O (n), ya que se usa un solo bucle dentro de la función fourpowersum().
Complejidad espacial: O(1), ya que no se utiliza espacio adicional.
Enfoque eficiente: una solución eficiente es usar una fórmula matemática directa que es 1/30n(n+1)(2n+1)(3n2+3n+1) o también escribir (1/5)n 5 + (1 /2)n 4 + (1/3)n 3 – (1/30)n. Esta solución toma O(1) tiempo.
C++
// CPP Program to find the sum of forth power of first // n natural numbers #include <bits/stdc++.h> using namespace std; // Return the sum of forth power of first n natural // numbers long long int fourthPowerSum(int n) { return ((6 * n * n * n * n * n) + (15 * n * n * n * n) + (10 * n * n * n) - n) / 30; } // Driven Program int main() { int n = 6; cout << fourthPowerSum(n) << endl; return 0; }
Java
// Java Program to find the // sum of forth powers of // first n natural numbers import java.io.*; import java.util.*; class GFG { // Return the sum of // forth power of first // n natural numbers static long fourthPowerSum(int n) { return ((6 * n * n * n * n * n) + (15 * n * n * n * n) + (10 * n * n * n) - n) / 30; } public static void main (String[] args) { int n = 6; System.out.println(fourthPowerSum(n)); } } // This code is contributed by Gitanjali.
Python3
# Python3 Program to # find the sum of # forth powers of # first n natural numbers import math # Return the sum of # forth power of # first n natural # numbers def fourthPowerSum(n): return ((6 * n * n * n * n * n) + (15 * n * n * n * n) + (10 * n * n * n) - n) / 30 # Driver method n=6 print (fourthPowerSum(n)) # This code is contributed by Gitanjali.
C#
// C# Program to find the // sum of forth powers of // first n natural numbers using System; class GFG { // Return the sum of // forth power of first // n natural numbers static long fourthPowerSum(int n) { return ((6 * n * n * n * n * n) + (15 * n * n * n * n) + (10 * n * n * n) - n) / 30; } public static void Main () { int n = 6; Console.Write(fourthPowerSum(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find the sum // of fourth power of first // n natural numbers // Return the sum of fourth // power of first n natural // numbers function fourthPowerSum($n) { return ((6 * $n * $n * $n * $n * $n) + (15 * $n * $n * $n * $n) + (10 * $n * $n * $n) - $n) / 30; } // Driver Code $n = 6; echo(fourthPowerSum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript Program to find the // sum of forth powers of // first n natural numbers // Return the sum of // forth power of first // n natural numbers function fourthPowerSum(n) { return ((6 * n * n * n * n * n) + (15 * n * n * n * n) + (10 * n * n * n) - n) / 30; } var n = 6; document.write(fourthPowerSum(n)); // This code is contributed by 29AjayKumar </script>
Producción:
2275
Análisis de Complejidad:
Tiempo Complejidad : O(1)
Complejidad espacial: O(1)
Publicación traducida automáticamente
Artículo escrito por jaingyayak y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA