Dado un entero positivo n . La tarea es encontrar la suma de la suma de los primeros n números naturales.
Ejemplos:
Input : n = 3 Output : 10 Sum of first natural number: 1 Sum of first and second natural number: 1 + 2 = 3 Sum of first, second and third natural number = 1 + 2 + 3 = 6 Sum of sum of first three natural number = 1 + 3 + 6 = 10 Input : n = 2 Output : 4
Una solución simple es sumar números triangulares uno por uno.
C++
/* CPP program to find sum series 1, 3, 6, 10, 15, 21... and then find its sum*/ #include <iostream> using namespace std; // Function to find the sum of series int seriesSum(int n) { int sum = 0; for (int i=1; i<=n; i++) sum += i*(i+1)/2; return sum; } // Driver code int main() { int n = 4; cout << seriesSum(n); return 0; }
Java
// Java program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum*/ import java.io.*; class GFG { // Function to find the sum of series static int seriesSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += i * (i + 1) / 2; return sum; } // Driver code public static void main (String[] args) { int n = 4; System.out.println(seriesSum(n)); } } // This article is contributed by vt_m
Python3
# Python3 program to find sum # series 1, 3, 6, 10, 15, 21... # and then find its sum. # Function to find the sum of series def seriessum(n): sum = 0 for i in range(1, n + 1): sum += i * (i + 1) / 2 return sum # Driver code n = 4 print(seriessum(n)) # This code is Contributed by Azkia Anam.
C#
// C# program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum*/ using System; class GFG { // Function to find the sum of series static int seriesSum(int n) { int sum = 0; for (int i = 1; i <= n; i++) sum += i * (i + 1) / 2; return sum; } // Driver code public static void Main() { int n = 4; Console.WriteLine(seriesSum(n)); } } // This article is contributed by vt_m.
PHP
<?php // PHP program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum // Function to find // the sum of series function seriesSum($n) { $sum = 0; for ($i = 1; $i <= $n; $i++) $sum += $i * ($i + 1) / 2; return $sum; } // Driver code $n = 4; echo(seriesSum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum*/ // Function to find the sum of series function seriesSum(n) { var sum = 0; for (i = 1; i <= n; i++) sum += i * ((i + 1) / 2); return sum; } // Driver code var n = 4; document.write(seriesSum(n)); // This code contributed by Rajput-Ji </script>
Producción:
20
Complejidad del tiempo: O(n)
Una solución eficiente es usar la fórmula directa n(n+1)(n+2)/6
Matemáticamente, necesitamos encontrar, Σ ((i * (i + 1))/2), donde 1 <= i <= n
Entonces, resolvamos esta suma,
Sum = Σ ((i * (i + 1))/2), where 1 <= i <= n = (1/2) * Σ (i * (i + 1)) = (1/2) * Σ (i2 + i) = (1/2) * (Σ i2 + Σ i) We know Σ i2 = n * (n + 1) * (2*n + 1) / 6 and Σ i = n * ( n + 1) / 2. Substituting the value, we get, Sum = (1/2) * ((n * (n + 1) * (2*n + 1) / 6) + (n * ( n + 1) / 2)) = n * (n + 1)/2 [(2n + 1)/6 + 1/2] = n * (n + 1) * (n + 2) / 6
A continuación se muestra la implementación del enfoque anterior:
C++
/* CPP program to find sum series 1, 3, 6, 10, 15, 21... and then find its sum*/ #include <iostream> using namespace std; // Function to find the sum of series int seriesSum(int n) { return (n * (n + 1) * (n + 2)) / 6; } // Driver code int main() { int n = 4; cout << seriesSum(n); return 0; }
Java
// java program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum import java.io.*; class GFG { // Function to find the sum of series static int seriesSum(int n) { return (n * (n + 1) * (n + 2)) / 6; } // Driver code public static void main (String[] args) { int n = 4; System.out.println( seriesSum(n)); } } // This article is contributed by vt_m
Python3
# Python 3 program to find sum # series 1, 3, 6, 10, 15, 21... # and then find its sum*/ # Function to find the sum of series def seriesSum(n): return int((n * (n + 1) * (n + 2)) / 6) # Driver code n = 4 print(seriesSum(n)) # This code is contributed by Smitha.
C#
// C# program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum using System; class GFG { // Function to find the sum of series static int seriesSum(int n) { return (n * (n + 1) * (n + 2)) / 6; } // Driver code public static void Main() { int n = 4; Console.WriteLine(seriesSum(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum // Function to find // the sum of series function seriesSum($n) { return ($n * ($n + 1) * ($n + 2)) / 6; } // Driver code $n = 4; echo(seriesSum($n)); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript program to find sum // series 1, 3, 6, 10, 15, 21... // and then find its sum // Function to find the sum of series function seriesSum(n) { return (n * (n + 1) * (n + 2)) / 6; } // Driver code var n = 4; document.write( seriesSum(n)); // This code is contributed by shikhasingrajput </script>
Producción:
20
Complejidad del tiempo : O(1)