Suma de los primeros N términos de la serie 2,10, 30, 68,….

Dado un número N, la tarea es encontrar la suma de los primeros N términos de la siguiente serie:
 

Sn = 2 + 10 + 30 + 68 + … hasta n términos

Ejemplos: 
 

Input: N = 2
Output: 12
2 + 10
= 12

Input: N = 4 
Output: 40
2 + 10 + 30 + 68
= 110

Enfoque: Sea, el término n-ésimo sea denotado por tn. 
Este problema se puede resolver fácilmente dividiendo cada término de la siguiente manera: 
 

Sn = 2 + 10 + 30 + 68 + ......
Sn = (1+1^3) + (2+2^3) + (3+3^3) + (4+4^3) +......
Sn = (1 + 2 + 3 + 4 + ...unto n terms) + (1^3 + 2^3 + 3^3 + 4^3 + ...upto n terms)

Observamos que Sn puede descomponerse en la suma de dos series. 
Por lo tanto, la suma de los primeros n términos se da de la siguiente manera: 
 

Sn = (1 + 2 + 3 + 4 + ...unto n terms) + (1^3 + 2^3 + 3^3 + 4^3 + ...upto n terms)
Sn = n*(n + 1)/2 + (n*(n + 1)/2)^2

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find sum of first n terms
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
int calculateSum(int n)
{
 
    return n * (n + 1) / 2
           + pow((n * (n + 1) / 2), 2);
}
 
// Driver code
int main()
{
    // number of terms to be
    // included in the sum
    int n = 3;
 
    // find the Sum
    cout << "Sum = " << calculateSum(n);
 
    return 0;
}

Java

// Java program to find sum of first n terms
 
public class GFG {
     
    // Function to calculate the sum
    static int calculateSum(int n)
    {
       
        return n * (n + 1) / 2 
               + (int)Math.pow((n * (n + 1) / 2), 2);
    }
     
    // Driver code
    public static void main(String args[])
    {
        // number of terms to be
        // included in the sum
        int n = 3;
       
        // find the Sum
        System.out.println("Sum = "+ calculateSum(n));
    }
    // This Code is contributed by ANKITRAI1
}

Python3

# Python program to find sum
# of first n terms
 
# Function to calculate the sum
def calculateSum(n):
    return (n * (n + 1) // 2 +
        pow((n * (n + 1) // 2), 2))
 
# Driver code
 
# number of terms to be
# included in the sum
n = 3
 
# find the Sum
print("Sum = ", calculateSum(n))
 
# This code is contributed by
# Sanjit_Prasad

C#

// C# program to find sum of first n terms
using System;
class gfg
{
    // Function to calculate the sum
    public void calculateSum(int n)
    {
        double r = (n * (n + 1) / 2 +
                Math.Pow((n * (n + 1) / 2), 2));
        Console.WriteLine("Sum = " + r);
    }
 
    // Driver code
    public static int Main()
    {
        gfg g = new gfg();
 
        // number of terms to be
        // included in the sum
        int n = 3;
         
        // find the Sum
        g.calculateSum(n);
        Console.Read();
        return 0;
    }
}

PHP

<?php
// PHP program to find sum
// of first n terms
 
// Function to calculate the sum
function calculateSum($n)
{
    return $n * ($n + 1) / 2 +
      pow(($n * ($n + 1) / 2), 2);
}
 
// Driver code
 
// number of terms to be
// included in the sum
$n = 3;
 
// find the Sum
echo "Sum = " , calculateSum($n);
 
// This code is contributed
// by anuj_67
?>

Javascript

<script>
 
// Javascript program to find sum of first n terms
 
// Function to calculate the sum
function calculateSum(n)
{
 
    return n * (n + 1) / 2
        + Math.pow((n * (n + 1) / 2), 2);
}
 
// Driver code
 
    // number of terms to be
    // included in the sum
    let n = 3;
 
    // find the Sum
    document.write("Sum = " + calculateSum(n));
 
 
// This code is contributed by Mayank Tyagi
 
</script>
Producción: 

Sum = 42

 

Complejidad de tiempo: O(1), el código se ejecutará en un tiempo constante.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.

Publicación traducida automáticamente

Artículo escrito por Shashank_Sharma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *