Dado un entero positivo N, la tarea es encontrar el valor de F 2 + F 4 + F 6 +………+ F 2n hasta N términos donde F i denota el i-ésimo número de Fibonacci.
Los números de Fibonacci son los números en la siguiente secuencia de enteros.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……
Ejemplos:
Entrada: n = 5
Salida: 88
N = 5, por lo que la serie de Fibonacci se generará desde el término 0 hasta el término 10:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
Suma de elementos en índices pares = 0 + 1 + 3 + 8 + 21 + 55
Entrada: n = 8
Salida: 1596
0 + 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 = 1596.
Método 1: este método incluye resolver el problema directamente encontrando todos los números de Fibonacci hasta 2n y sumando solo los índices pares. Pero esto requerirá una complejidad de tiempo O(n).
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find sum // of even-indiced Fibonacci numbers #include <bits/stdc++.h> using namespace std; // Computes value of first fibonacci numbers // and stores the even-indexed sum int calculateEvenSum(int n) { if (n <= 0) return 0; int fibo[2 * n + 1]; fibo[0] = 0, fibo[1] = 1; // Initialize result int sum = 0; // Add remaining terms for (int i = 2; i <= 2 * n; i++) { fibo[i] = fibo[i - 1] + fibo[i - 2]; // For even indices if (i % 2 == 0) sum += fibo[i]; } // Return the alternating sum return sum; } // Driver program to test above function int main() { // Get n int n = 8; // Find the even-indiced sum cout << "Even indexed Fibonacci Sum upto " << n << " terms: " << calculateEvenSum(n) << endl; return 0; }
Java
// Java Program to find sum // of even-indiced Fibonacci numbers import java.io.*; class GFG { // Computes value of first fibonacci numbers // and stores the even-indexed sum static int calculateEvenSum(int n) { if (n <= 0) return 0; int fibo[] = new int[2 * n + 1]; fibo[0] = 0; fibo[1] = 1; // Initialize result int sum = 0; // Add remaining terms for (int i = 2; i <= 2 * n; i++) { fibo[i] = fibo[i - 1] + fibo[i - 2]; // For even indices if (i % 2 == 0) sum += fibo[i]; } // Return the alternating sum return sum; } // Driver program public static void main (String[] args) { // Get n int n = 8; // Find the even-indiced sum System.out.println("Even indexed Fibonacci Sum upto " + n + " terms: "+ + calculateEvenSum(n)); } } // This code is contributed // by shs
Python 3
# Python3 Program to find sum # of even-indiced Fibonacci numbers # Computes value of first fibonacci # numbers and stores the even-indexed sum def calculateEvenSum(n) : if n <= 0 : return 0 fibo = [0] * (2 * n + 1) fibo[0] , fibo[1] = 0 , 1 # Initialize result sum = 0 # Add remaining terms for i in range(2, 2 * n + 1) : fibo[i] = fibo[i - 1] + fibo[i - 2] # For even indices if i % 2 == 0 : sum += fibo[i] # Return the alternating sum return sum # Driver code if __name__ == "__main__" : # Get n n = 8 # Find the even-indiced sum print("Even indexed Fibonacci Sum upto", n, "terms:", calculateEvenSum(n)) # This code is contributed # by ANKITRAI1
C#
// C# Program to find sum of // even-indiced Fibonacci numbers using System; class GFG { // Computes value of first fibonacci // numbers and stores the even-indexed sum static int calculateEvenSum(int n) { if (n <= 0) return 0; int []fibo = new int[2 * n + 1]; fibo[0] = 0; fibo[1] = 1; // Initialize result int sum = 0; // Add remaining terms for (int i = 2; i <= 2 * n; i++) { fibo[i] = fibo[i - 1] + fibo[i - 2]; // For even indices if (i % 2 == 0) sum += fibo[i]; } // Return the alternating sum return sum; } // Driver Code static public void Main () { // Get n int n = 8; // Find the even-indiced sum Console.WriteLine("Even indexed Fibonacci Sum upto " + n + " terms: " + calculateEvenSum(n)); } } // This code is contributed // by Sach_Code
PHP
<?php // PHP Program to find sum of // even-indiced Fibonacci numbers // Computes value of first fibonacci // numbers and stores the even-indexed sum function calculateEvenSum($n) { if ($n <= 0) return 0; $fibo[2 * $n + 1] = array(); $fibo[0] = 0; $fibo[1] = 1; // Initialize result $sum = 0; // Add remaining terms for ($i = 2; $i <= 2 * $n; $i++) { $fibo[$i] = $fibo[$i - 1] + $fibo[$i - 2]; // For even indices if ($i % 2 == 0) $sum += $fibo[$i]; } // Return the alternating sum return $sum; } // Driver Code // Get n $n = 8; // Find the even-indiced sum echo "Even indexed Fibonacci Sum upto " . $n . " terms: " . calculateEvenSum($n) . "\n"; // This code is contributed // by Akanksha Rai(Abby_akku) ?>
Javascript
<script> // Javascript Program to find sum // of even-indiced Fibonacci numbers // Computes value of first fibonacci numbers // and stores the even-indexed sum function calculateEvenSum( n) { if (n <= 0) return 0; let fibo = Array(2 * n + 1); fibo[0] = 0; fibo[1] = 1; // Initialize result let sum = 0; // Add remaining terms for ( i = 2; i <= 2 * n; i++) { fibo[i] = fibo[i - 1] + fibo[i - 2]; // For even indices if (i % 2 == 0) sum += fibo[i]; } // Return the alternating sum return sum; } // Driver program // Get n let n = 8; // Find the even-indiced sum document.write("Even indexed Fibonacci Sum upto " + n + " terms: " + +calculateEvenSum(n)); // This code is contributed by 29AjayKumar </script>
Even indexed Fibonacci Sum upto 8 terms: 1596
Método-2:
Se puede ver claramente que la suma requerida se puede obtener así:
2 ( F 2 + F 4 + F 6 +………+ F 2n ) = (F 1 + F 2 + F 3 + F 4 +………+ F 2n ) – (F 1 – F 2 + F 3 – F 4 +………+ F 2n )
Ahora el primer término se puede obtener si ponemos 2n en lugar de n en la fórmula dada aquí .
Así F 1 + F 2 + F 3 + F 4 +………+ F2n = F 2n+2 – 1.
El segundo término también se puede encontrar si ponemos 2n en lugar de n en la fórmula dada aquí
Así, F 1 – F 2 + F 3 – F 4 +…………- F 2n = 1 + (-1) 2n+1 F 2n-1 = 1 – F 2n-1 .
Entonces, 2 ( F 2 + F 4 + F 6 +………+ F 2n )
= F 2n+2 – 1 – 1 + F 2n-1
= F 2n+2 + F 2n-1 – 2
=F 2n + F 2n+1 + F 2n+1 – F 2n – 2
= 2 ( F 2n+1 -1)
Por lo tanto, ( F 2 + F 4 + F 6 +………+ F 2n ) = F 2n+ 1 -1 .
Entonces, para encontrar la suma requerida, la tarea es encontrar solo F 2n+1 que requiere tiempo O (log n). (Consulte el método 5 o el método 6 en este artículo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find even indexed Fibonacci Sum in // O(Log n) time. #include <bits/stdc++.h> using namespace std; const int MAX = 1000; // Create an array for memoization int f[MAX] = { 0 }; // Returns n'th Fibonacci number // using table f[] int fib(int n) { // Base cases if (n == 0) return 0; if (n == 1 || n == 2) return (f[n] = 1); // If fib(n) is already computed if (f[n]) return f[n]; int k = (n & 1) ? (n + 1) / 2 : n / 2; // Applying above formula [Note value n&1 is 1 // if n is odd, else 0]. f[n] = (n & 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) : (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; } // Computes value of even-indexed Fibonacci Sum int calculateEvenSum(int n) { return (fib(2 * n + 1) - 1); } // Driver program to test above function int main() { // Get n int n = 8; // Find the alternating sum cout << "Even indexed Fibonacci Sum upto " << n << " terms: " << calculateEvenSum(n) << endl; return 0; }
Java
// Java Program to find even indexed Fibonacci Sum in // O(Log n) time. class GFG { static int MAX = 1000; // Create an array for memoization static int f[] = new int[MAX]; // Returns n'th Fibonacci number // using table f[] static int fib(int n) { // Base cases if (n == 0) { return 0; } if (n == 1 || n == 2) { return (f[n] = 1); } // If fib(n) is already computed if (f[n] == 1) { return f[n]; } int k = (n % 2 == 1) ? (n + 1) / 2 : n / 2; // Applying above formula [Note value n&1 is 1 // if n is odd, else 0]. f[n] = (n % 2 == 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) : (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; } // Computes value of even-indexed Fibonacci Sum static int calculateEvenSum(int n) { return (fib(2 * n + 1) - 1); } // Driver program to test above function public static void main(String[] args) { // Get n int n = 8; // Find the alternating sum System.out.println("Even indexed Fibonacci Sum upto " + n + " terms: " + calculateEvenSum(n)); } } // This code is contributed by Rajput-Ji
Python3
# Python3 Program to find even indexed # Fibonacci Sum in O(Log n) time. MAX = 1000; # Create an array for memoization f = [0] * MAX; # Returns n'th Fibonacci number # using table f[] def fib(n): # Base cases if (n == 0): return 0; if (n == 1 or n == 2): f[n] = 1; return f[n]; # If fib(n) is already computed if (f[n]): return f[n]; k = (n + 1) // 2 if (n % 2 == 1) else n // 2; # Applying above formula [Note value n&1 is 1 # if n is odd, else 0]. f[n] = (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) \ if (n % 2 == 1) else (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; # Computes value of even-indexed Fibonacci Sum def calculateEvenSum(n): return (fib(2 * n + 1) - 1); # Driver Code if __name__ == '__main__': # Get n n = 8; # Find the alternating sum print("Even indexed Fibonacci Sum upto", n, "terms:", calculateEvenSum(n)); # This code is contributed by PrinciRaj1992
C#
// C# Program to find even indexed Fibonacci Sum in // O(Log n) time. using System; class GFG { static int MAX = 1000; // Create an array for memoization static int []f = new int[MAX]; // Returns n'th Fibonacci number // using table f[] static int fib(int n) { // Base cases if (n == 0) { return 0; } if (n == 1 || n == 2) { return (f[n] = 1); } // If fib(n) is already computed if (f[n] == 1) { return f[n]; } int k = (n % 2 == 1) ? (n + 1) / 2 : n / 2; // Applying above formula [Note value n&1 is 1 // if n is odd, else 0]. f[n] = (n % 2 == 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) : (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; } // Computes value of even-indexed Fibonacci Sum static int calculateEvenSum(int n) { return (fib(2 * n + 1) - 1); } // Driver code public static void Main() { // Get n int n = 8; // Find the alternating sum Console.WriteLine("Even indexed Fibonacci Sum upto " + n + " terms: " + calculateEvenSum(n)); } } //This code is contributed by 29AjayKumar
Javascript
<script> // javascript Program to find even indexed Fibonacci Sum in // O(Log n) time. var MAX = 1000; // Create an array for memoization var f = Array(MAX).fill(0); // Returns n'th Fibonacci number // using table f function fib(n) { // Base cases if (n == 0) { return 0; } if (n == 1 || n == 2) { return (f[n] = 1); } // If fib(n) is already computed if (f[n] == 1) { return f[n]; } var k = (n % 2 == 1) ? (n + 1) / 2 : n / 2; // Applying above formula [Note value n&1 is 1 // if n is odd, else 0]. f[n] = (n % 2 == 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) : (2 * fib(k - 1) + fib(k)) * fib(k); return f[n]; } // Computes value of even-indexed Fibonacci Sum function calculateEvenSum(n) { return (fib(2 * n + 1) - 1); } // Driver program to test above function // Get n var n = 8; // Find the alternating sum document.write("Even indexed Fibonacci Sum upto " + n + " terms: " + calculateEvenSum(n)); // This code is contributed by todaysgaurav </script>
Even indexed Fibonacci Sum upto 8 terms: 1596
Publicación traducida automáticamente
Artículo escrito por tufan_gupta2000 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA