Dado un entero D , la tarea es encontrar la suma de todos los números primos cuya posición máxima de bits establecidos (el bit establecido más alejado de la derecha) es menor o igual que D .
Nota: 2 en binario es 10 y la posición de bit máxima establecida es 2. 7 en binario es 111, la posición de bit máxima establecida es 3.
Ejemplos:
Entrada: D = 3
Salida: 17
2, 3, 5 y 7 son los únicos primos
que cumplen la condición dada.
Entrada: D = 8
Salida: 6081
Enfoque: El número máximo que satisface la condición dada es 2 D – 1 . Por lo tanto, genere todos los números primos usando la criba de Eratóstenes hasta 2 D – 1 y luego encuentre la suma de todos los números primos en el mismo rango.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ #include <bits/stdc++.h> using namespace std; // Function for Sieve of Eratosthenes void sieve(bool prime[], int n) { prime[0] = false; prime[1] = false; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } } // Function to return the sum of // the required prime numbers int sumPrime(int d) { // Maximum number of the required range int maxVal = pow(2, d) - 1; // Sieve of Eratosthenes bool prime[maxVal + 1]; memset(prime, true, sizeof(prime)); sieve(prime, maxVal); // To store the required sum int sum = 0; for (int i = 2; i <= maxVal; i++) { // If current element is prime if (prime[i]) { sum += i; } } return sum; } // Driver code int main() { int d = 8; cout << sumPrime(d); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function for Sieve of Eratosthenes static void sieve(boolean prime[], int n) { prime[0] = false; prime[1] = false; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } } // Function to return the sum of // the required prime numbers static int sumPrime(int d) { // Maximum number of the required range int maxVal = (int) (Math.pow(2, d) - 1); // Sieve of Eratosthenes boolean []prime = new boolean[maxVal + 1]; Arrays.fill(prime, true); sieve(prime, maxVal); // To store the required sum int sum = 0; for (int i = 2; i <= maxVal; i++) { // If current element is prime if (prime[i]) { sum += i; } } return sum; } // Driver code public static void main(String[] args) { int d = 8; System.out.println(sumPrime(d)); } } // This code is contributed by PrinciRaj1992
Python 3
# Python 3 implementation of the approach from math import sqrt, pow # Function for Sieve of Eratosthenes def sieve(prime, n): prime[0] = False prime[1] = False for p in range(2, int(sqrt(n)) + 1, 1): if (prime[p] == True): for i in range(p * p, n + 1, p): prime[i] = False # Function to return the sum of # the required prime numbers def sumPrime(d): # Maximum number of the required range maxVal = int(pow(2, d)) - 1; # Sieve of Eratosthenes prime = [True for i in range(maxVal + 1)] sieve(prime, maxVal) # To store the required sum sum = 0 for i in range(2, maxVal + 1, 1): # If current element is prime if (prime[i]): sum += i return sum # Driver code if __name__ == '__main__': d = 8 print(sumPrime(d)) # This code is contributed by Surendra_Gangwar
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function for Sieve of Eratosthenes static void sieve(Boolean []prime, int n) { prime[0] = false; prime[1] = false; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } } // Function to return the sum of // the required prime numbers static int sumPrime(int d) { // Maximum number of the required range int maxVal = (int) (Math.Pow(2, d) - 1); // Sieve of Eratosthenes Boolean []prime = new Boolean[maxVal + 1]; for (int i = 0; i <= maxVal; i++) prime.SetValue(true,i); sieve(prime, maxVal); // To store the required sum int sum = 0; for (int i = 2; i <= maxVal; i++) { // If current element is prime if (prime[i]) { sum += i; } } return sum; } // Driver code public static void Main(String[] args) { int d = 8; Console.WriteLine(sumPrime(d)); } } // This code is contributed by 29AjayKumar
Javascript
<script> //Javascript implementation of the approach // Function for Sieve of Eratosthenes function sieve(prime, n) { prime[0] = false; prime[1] = false; for (var p = 2; p * p <= n; p++) { if (prime[p] == true) { for (var i = p * p; i <= n; i += p) prime[i] = false; } } } // Function to return the sum of // the required prime numbers function sumPrime(d) { // Maximum number of the required range var maxVal = Math.pow(2, d) - 1; // Sieve of Eratosthenes var prime = new Array(maxVal + 1); prime.fill(true); sieve(prime, maxVal); // To store the required sum var sum = 0; for (var i = 2; i <= maxVal; i++) { // If current element is prime if (prime[i]) { sum += i; } } return sum; } var d = 8; document.write( sumPrime(d)); //This code is contributed by SoumikMondal </script>
6081
Complejidad del tiempo: O(sqrt(2 d ))
Espacio Auxiliar: O(2 d )
Publicación traducida automáticamente
Artículo escrito por Sanjit_Prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA