Triángulo de perímetro máximo de array

Dada una array de enteros no negativos. Encuentra tres elementos de esta array que formen un triángulo de perímetro máximo.

Ejemplos:  

Input : {6, 1, 6, 5, 8, 4}
Output : 20

Input : {2, 20, 7, 55, 1, 33, 12, 4}
Output : Triangle formation is not possible.

Input: {33, 6, 20, 1, 8, 12, 5, 55, 4, 9}
Output: 41 

Solución ingenua: 
la solución de fuerza bruta es: verifique todas las combinaciones de 3 elementos, ya sea que forme un triángulo o no, y actualice el perímetro máximo si forma un triángulo. La complejidad de la solución ingenua es O(n 3 ). A continuación se muestra el código para ello. 

C++

// Brute force solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
#include <iostream>
#include <algorithm>
 
using namespace std;
 
// Function to find out maximum perimeter
void maxPerimeter(int arr[], int n){
 
    // initialize maximum perimeter
    // as 0.
    int maxi = 0;
 
    // pick up 3 different elements
    // from the array.
    for (int i = 0; i < n - 2; i++){
        for (int j = i + 1; j < n - 1; j++){
            for (int k = j + 1; k < n; k++){
 
                // a, b, c are 3 sides of the triangle
                int a = arr[i];
                int b = arr[j];
                int c = arr[k];
 
                // check whether a, b, c forms
                // a triangle or not.
                if (a < b+c && b < c+a && c < a+b){
 
                    // if it forms a triangle
                    // then update the maximum value.
                    maxi = max(maxi, a+b+c);
                }
            }
        }
    }
 
    // If maximum perimeter is non-zero
    // then print it.
    if (maxi) cout << "Maximum Perimeter is: "
                   << maxi << endl;
 
    // otherwise no triangle formation
    // is possible.
    else cout << "Triangle formation "
        << "is not possible." << endl;
}
 
// Driver Program
int main()
{
    // test case 1
    int arr1[6] = {6, 1, 6, 5, 8, 4};
    maxPerimeter(arr1, 6);
 
    // test case 2
    int arr2[8] = {2, 20, 7, 55, 1,
                    33, 12, 4};
    maxPerimeter(arr2, 8);
 
    // test case 3
    int arr3[10] = {33, 6, 20, 1, 8,
                    12, 5, 55, 4, 9};
    maxPerimeter(arr3, 10);
 
    return 0;
}

Java

// Brute force solution to find out maximum
// perimeter triangle which can be formed
// using the elements of the given array
import java.io.*;
 
class GFG {
 
    // Function to find out maximum perimeter
    static void maxPerimeter(int arr[], int n)
    {
     
        // initialize maximum perimeter as 0.
        int maxi = 0;
     
        // pick up 3 different elements
        // from the array.
        for (int i = 0; i < n - 2; i++)
        {
            for (int j = i + 1; j < n - 1; j++)
            {
                for (int k = j + 1; k < n; k++)
                {
     
                    // a, b, c are 3 sides of
                    // the triangle
                    int a = arr[i];
                    int b = arr[j];
                    int c = arr[k];
     
                    // check whether a, b, c
                    // forms a triangle or not.
                    if (a < b+c && b < c+a && c < a+b)
                    {
     
                        // if it forms a triangle
                        // then update the maximum
                        // value.
                        maxi = Math.max(maxi, a+b+c);
                    }
                }
            }
        }
     
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi > 0)
        System.out.println( "Maximum Perimeter is: "
                                             + maxi);
     
        // otherwise no triangle formation
        // is possible.
        else
        System.out.println( "Triangle formation "
                              + "is not possible." );
    }
     
    // Driver Program
    public static void main (String[] args)
    {
         
        // test case 1
        int arr1[] = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
     
        // test case 2
        int arr2[] = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
     
        // test case 3
        int arr3[] = {33, 6, 20, 1, 8,
                                12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
 
// This code is contributed by anuj_67.

Python

# Brute force solution to find
# out maximum perimeter triangle
# which can be formed using the
# elements of the given array
 
# Function to find out
# maximum perimeter
def maxPerimeter(arr):
    maxi = 0
    n = len(arr)
     
    # pick up 3 different
    # elements from the array.
    for i in range(n - 2):
        for j in range(i + 1, n - 1):
            for k in range(j + 1, n):
                 
                # a, b, c are 3 sides
                # of the triangle
                a = arr[i]
                b = arr[j]
                c = arr[k]
                if(a < b + c and b < a + c
                             and c < a + b):
                    maxi = max(maxi, a + b + c)
 
    if(maxi == 0):
        return "Triangle formation is not possible"
    else:
        return "Maximum Perimeter is: "+ str(maxi)
 
# Driver code
def main():
    arr1 = [6, 1, 6, 5, 8, 4]
    a = maxPerimeter(arr1)
    print(a)
 
    arr2 = [2, 20, 7, 55,
            1, 33, 12, 4]
    a = maxPerimeter(arr2)
    print(a)
 
    arr3 = [33, 6, 20, 1, 8,
            12, 5, 55, 4, 9]
    a = maxPerimeter(arr3)
    print(a)
 
if __name__=='__main__':
    main()
 
# This code is contributed
# by Pritha Updhayay

C#

// Brute force solution to find out
// maximum perimeter triangle which
// can be formed using the elements
// of the given array
using System;
 
class GFG
{
 
    // Function to find out
    // maximum perimeter
    static void maxPerimeter(int []arr,    
                             int n)
    {
     
        // initialize maximum
        // perimeter as 0.
        int maxi = 0;
     
        // pick up 3 different elements
        // from the array.
        for (int i = 0; i < n - 2; i++)
        {
            for (int j = i + 1; j < n - 1; j++)
            {
                for (int k = j + 1; k < n; k++)
                {
     
                    // a, b, c are 3 sides of
                    // the triangle
                    int a = arr[i];
                    int b = arr[j];
                    int c = arr[k];
     
                    // check whether a, b, c
                    // forms a triangle or not.
                    if (a < b + c &&
                        b < c + a &&
                        c < a + b)
                    {
     
                        // if it forms a triangle
                        // then update the maximum
                        // value.
                        maxi = Math.Max(maxi, a + b + c);
                    }
                }
            }
        }
     
        // If maximum perimeter is
        // non-zero then print it.
        if (maxi > 0)
        Console.WriteLine("Maximum Perimeter is: "+ maxi);
     
        // otherwise no triangle
        // formation is possible.
        else
        Console.WriteLine("Triangle formation "+
                          "is not possible.");
    }
     
    // Driver Code
    public static void Main ()
    {
         
        // test case 1
        int []arr1 = {6, 1, 6,
                      5, 8, 4};
        maxPerimeter(arr1, 6);
     
        // test case 2
        int []arr2 = {2, 20, 7, 55,
                      1, 33, 12, 4};
        maxPerimeter(arr2, 8);
     
        // test case 3
        int []arr3 = {33, 6, 20, 1, 8,
                      12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
 
// This code is contributed by anuj_67.

PHP

<?php
// Brute force solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
 
// Function to find out
// maximum perimeter
function maxPerimeter($arr, $n)
{
 
    // initialize maximum
    // perimeter as 0.
    $maxi = 0;
 
    // pick up 3 different
    // elements from the array.
    for ($i = 0; $i < $n - 2; $i++)
    {
        for ( $j = $i + 1; $j < $n - 1; $j++)
        {
            for ( $k = $j + 1; $k < $n; $k++)
            {
 
                // a, b, c are 3 sides
                // of the triangle
                $a = $arr[$i];
                $b = $arr[$j];
                $c = $arr[$k];
 
                // check whether a, b, c
                // forms a triangle or not.
                if ($a < $b + $c and
                    $b < $c + $a and
                    $c < $a + $b)
                {
 
                    // if it forms a triangle
                    // then update the maximum value.
                    $maxi = max($maxi, $a + $b + $c);
                }
            }
        }
    }
 
    // If maximum perimeter is
    // non-zero then print it.
    if ($maxi)
    {
    echo "Maximum Perimeter is: ";
    echo $maxi ,"\n";
    }
 
    // otherwise no triangle
    // formation is possible.
    else
    {
    echo "Triangle formation ";
    echo "is not possible. \n";
    }
}
 
// Driver Code
 
// test case 1
$arr1 = array(6, 1, 6, 5, 8, 4);
maxPerimeter($arr1, 6);
 
// test case 2
$arr2 = array(2, 20, 7, 55,
              1, 33, 12, 4);
maxPerimeter($arr2, 8);
 
// test case 3
$arr3 = array(33, 6, 20, 1, 8,
              12, 5, 55, 4, 9);
maxPerimeter($arr3, 10);
 
// This code is contributed by anuj_67.
?>

Javascript

<script>
 
// JavaScript program to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
 
    // Function to find out maximum perimeter
    function maxPerimeter(arr, n)
    {
       
        // initialize maximum perimeter as 0.
        let maxi = 0;
       
        // pick up 3 different elements
        // from the array.
        for (let i = 0; i < n - 2; i++)
        {
            for (let j = i + 1; j < n - 1; j++)
            {
                for (let k = j + 1; k < n; k++)
                {
       
                    // a, b, c are 3 sides of
                    // the triangle
                    let a = arr[i];
                    let b = arr[j];
                    let c = arr[k];
       
                    // check whether a, b, c
                    // forms a triangle or not.
                    if (a < b+c && b < c+a && c < a+b)
                    {
       
                        // if it forms a triangle
                        // then update the maximum
                        // value.
                        maxi = Math.max(maxi, a+b+c);
                    }
                }
            }
        }
       
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi > 0)
        document.write( "Maximum Perimeter is: "
                                             + maxi + "<br/>");
       
        // otherwise no triangle formation
        // is possible.
        else
        document.write( "Triangle formation "
                              + "is not possible." + "<br/>" );
    }
 
// Driver code
 
        // test case 1
        let arr1 = [6, 1, 6, 5, 8, 4];
        maxPerimeter(arr1, 6);
       
        // test case 2
        let arr2 = [2, 20, 7, 55, 1, 33, 12, 4];
        maxPerimeter(arr2, 8);
       
        // test case 3
        let arr3 = [33, 6, 20, 1, 8,
                                12, 5, 55, 4, 9];
        maxPerimeter(arr3, 10);
 
// This code is contributed by splevel62.
</script>

Producción:  

Maximum Perimeter is: 20
Triangle formation is not possible.
Maximum Perimeter is: 41

Complejidad espacial :O(n) para array auxiliar

Enfoque eficiente: 
primero, podemos ordenar la array en orden no creciente. Entonces, el primer elemento será el máximo y el último será el mínimo. Ahora bien, si los primeros 3 elementos de esta array ordenada forman un triángulo, entonces será el triángulo de máximo perímetro, ya que para todas las demás combinaciones la suma de los elementos (es decir, el perímetro de ese triángulo) será = b >= c). a, b,c no pueden formar un triángulo, entonces a >= b + c. Como, b y c = c+d (si eliminamos b y tomamos d) o a >= b+d (si eliminamos c y tomamos d). Entonces, tenemos que soltar a y recoger d. 
Nuevamente, el mismo conjunto de análisis para b, c y d. Podemos continuar esto hasta el final y cada vez que encontremos un triángulo que forma un triple, entonces podemos dejar de verificar, ya que este triple da un perímetro máximo. 
Por lo tanto, si arr[i] < arr[i+1] + arr[i+2] (0 <= i <= n-3) en el arreglo ordenado, entonces arr[i], arr[i+1] y arr[i+2] forman un triángulo. 
A continuación se muestra la implementación simple de este concepto: 

C++

// Efficient solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
#include <iostream>
#include <algorithm>
 
using namespace std;
 
// Function to find out maximum perimeter
void maxPerimeter(int arr[], int n){
 
    // sort the array elements
    // in reversed order
    sort(arr, arr+n, greater<int>());
 
    // initialize maximum
    // perimeter to 0
    int maxi = 0;
 
    // loop through the sorted array
    // and check whether it forms a
    // triangle or not.
    for (int i = 0; i < n-2; i++){
 
        // Check whether arr[i], arr[i+1]
        // and arr[i+2] forms a triangle
        // or not.
        if (arr[i] < arr[i+1] + arr[i+2]){
 
            // if it forms a triangle then
            // it is the triangle with
            // maximum perimeter.
            maxi = max(maxi, arr[i] + arr[i+1] + arr[i+2]);
            break;
        }
    }
 
    // If maximum perimeter is non-zero
    // then print it.
    if (maxi)
        cout << "Maximum Perimeter is: "
        << maxi << endl;
 
    // otherwise no triangle formation
    // is possible.
    else
        cout << "Triangle formation"
        << "is not possible." << endl;
}
 
// Driver Program
int main()
{
    // test case 1
    int arr1[6] = {6, 1, 6, 5, 8, 4};
    maxPerimeter(arr1, 6);
 
    // test case 2
    int arr2[8] = {2, 20, 7, 55, 1,
                    33, 12, 4};
    maxPerimeter(arr2, 8);
 
    // test case 3
    int arr3[10] = {33, 6, 20, 1, 8,
                    12, 5, 55, 4, 9};
    maxPerimeter(arr3, 10);
 
    return 0;
}

Java

// Efficient solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
 
import java.util.Arrays;
 
class GFG {
 
// Function to find out maximum perimeter
    static void maxPerimeter(int arr[], int n) {
 
        // sort the array elements
        // in reversed order
        arr = arrRevSort(arr);
        //sort(arr, arr+n, greater<int>());
 
        // initialize maximum
        // perimeter to 0
        int maxi = 0;
 
        // loop through the sorted array
        // and check whether it forms a
        // triangle or not.
        for (int i = 0; i < n - 2; i++) {
 
            // Check whether arr[i], arr[i+1]
            // and arr[i+2] forms a triangle
            // or not.
            if (arr[i] < arr[i + 1] + arr[i + 2]) {
 
                // if it forms a triangle then
                // it is the triangle with
                // maximum perimeter.
                maxi = Math.max(maxi, arr[i] + arr[i + 1] + arr[i + 2]);
                break;
            }
        }
 
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi > 0) {
            System.out.println("Maximum Perimeter is: " + maxi);
        } // otherwise no triangle formation
        // is possible.
        else {
            System.out.println("Triangle formation is not possible.");
        }
    }
    //Function return sorted array in Decreasing
 
    static int[] arrRevSort(int[] arr) {
        Arrays.sort(arr, 0, arr.length);
        int j = arr.length - 1;
        for (int i = 0; i < arr.length / 2; i++, j--) {
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
        return arr;
    }
 
// Driver Program
    public static void main(String[] args) {
        // test case 1
        int arr1[] = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
 
        // test case 2
        int arr2[] = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
 
        // test case 3
        int arr3[] = {33, 6, 20, 1, 8, 12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
/*This Java code is contributed by 29AjayKumar*/

Python3

# Efficient solution to find
# out maximum perimeter triangle which
# can be formed using the elements
# of the given array
 
# Function to find the
# maximum perimeter
def maxPerimeter(arr):
    maxi = 0
    n = len(arr)
    arr.sort(reverse = True)
 
    for i in range(0, n - 2):
        if arr[i] < (arr[i + 1] + arr[i + 2]):
            maxi = max(maxi, arr[i] +
                       arr[i + 1] + arr[i + 2])
            break
 
    if(maxi == 0):
        return "Triangle formation is not possible"
    else:
        return "Maximum Perimeter is: "+ str(maxi)
 
# Driver Code
def main():
    arr1 = [6, 1, 6, 5, 8, 4]
    a = maxPerimeter(arr1)
    print(a)
 
    arr2 = [2, 20, 7, 55,
            1, 33, 12, 4]
    a = maxPerimeter(arr2)
    print(a)
 
    arr3 = [33, 6, 20, 1, 8,
            12, 5, 55, 4, 9]
    a = maxPerimeter(arr3)
    print(a)
 
if __name__=='__main__':
    main()
 
# This code is contributed
# by Pritha Upadhyay

C#

// Efficient solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
 
using System;
 
class GFG {
 
// Function to find out maximum perimeter
    static void maxPerimeter(int[] arr, int n) {
 
        // sort the array elements
        // in reversed order
        arr = arrRevSort(arr);
        //sort(arr, arr+n, greater<int>());
 
        // initialize maximum
        // perimeter to 0
        int maxi = 0;
 
        // loop through the sorted array
        // and check whether it forms a
        // triangle or not.
        for (int i = 0; i < n - 2; i++) {
 
            // Check whether arr[i], arr[i+1]
            // and arr[i+2] forms a triangle
            // or not.
            if (arr[i] < arr[i + 1] + arr[i + 2]) {
 
                // if it forms a triangle then
                // it is the triangle with
                // maximum perimeter.
                maxi = Math.Max(maxi, arr[i] + arr[i + 1] + arr[i + 2]);
                break;
            }
        }
 
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi > 0) {
            Console.WriteLine("Maximum Perimeter is: " + maxi);
        } // otherwise no triangle formation
        // is possible.
        else {
            Console.WriteLine("Triangle formation is not possible.");
        }
    }
    //Function return sorted array in Decreasing
 
    static int[] arrRevSort(int[] arr) {
        Array.Sort(arr);
        int j = arr.Length - 1;
        for (int i = 0; i < arr.Length / 2; i++, j--) {
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
        return arr;
    }
 
// Driver Program
    public static void Main() {
        // test case 1
        int[] arr1 = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
 
        // test case 2
        int[] arr2 = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
 
        // test case 3
        int[] arr3 = {33, 6, 20, 1, 8, 12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
/*This Java code is contributed by mits*/

PHP

<?php
// Efficient solution to find out maximum
// perimeter triangle which can be formed
// using the elements of the given array
 
// Function to find out maximum perimeter
function maxPerimeter(&$arr, $n)
{
 
    // sort the array elements in
    // reversed order
    rsort($arr);
 
    // initialize maximum perimeter to 0
    $maxi = 0;
 
    // loop through the sorted array
    // and check whether it forms a
    // triangle or not.
    for ($i = 0; $i < $n - 2; $i++)
    {
 
        // Check whether arr[i], arr[i+1]
        // and arr[i+2] forms a triangle
        // or not.
        if ($arr[$i] < $arr[$i + 1] +
                       $arr[$i + 2])
        {
 
            // if it forms a triangle then
            // it is the triangle with
            // maximum perimeter.
            $maxi = max($maxi, $arr[$i] +
                               $arr[$i + 1] +
                               $arr[$i + 2]);
            break;
        }
    }
 
    // If maximum perimeter is non-zero
    // then print it.
    if ($maxi)
    {
        echo ("Maximum Perimeter is: ");
        echo ($maxi) ;
        echo ("\n");
    }
 
    // otherwise no triangle formation
    // is possible.
    else
    {
        echo ("Triangle formation ");
        echo ("is not possible.");
        echo ("\n");
    }
}
 
// Driver Code
 
// test case 1
$arr1 = array(6, 1, 6, 5, 8, 4);
$s = sizeof($arr1);
maxPerimeter($arr1, $s);
 
// test case 2
$arr2 = array(2, 20, 7, 55, 1,33, 12, 4);
$st = sizeof($arr2);
maxPerimeter($arr2, $st);
 
// test case 3
$arr3 = array(33, 6, 20, 1, 8,
              12, 5, 55, 4, 9);
$st1 = sizeof($arr3);
maxPerimeter($arr3, $st1);
 
// This code is contributed
// by Shivi_Aggarwal
?>

Javascript

<script>   
    // Efficient solution to find
    // out maximum perimeter triangle which
    // can be formed using the elements
    // of the given array
     
    // Function to find out maximum perimeter
    function maxPerimeter(arr, n){
 
        // sort the array elements
        // in reversed order
        arr.sort(function(a, b){return a - b});
        arr.reverse();
 
        // initialize maximum
        // perimeter to 0
        let maxi = 0;
 
        // loop through the sorted array
        // and check whether it forms a
        // triangle or not.
        for (let i = 0; i < n-2; i++){
 
            // Check whether arr[i], arr[i+1]
            // and arr[i+2] forms a triangle
            // or not.
            if (arr[i] < arr[i+1] + arr[i+2]){
 
                // if it forms a triangle then
                // it is the triangle with
                // maximum perimeter.
                maxi = Math.max(maxi, arr[i] + arr[i+1] + arr[i+2]);
                break;
            }
        }
 
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi)
            document.write("Maximum Perimeter is: " + maxi + "</br>");
 
        // otherwise no triangle formation
        // is possible.
        else
            document.write("Triangle formation is not possible." + "</br>");
    }
     
    // test case 1
    let arr1 = [6, 1, 6, 5, 8, 4];
    maxPerimeter(arr1, 6);
  
    // test case 2
    let arr2 = [2, 20, 7, 55, 1, 33, 12, 4];
    maxPerimeter(arr2, 8);
  
    // test case 3
    let arr3 = [33, 6, 20, 1, 8, 12, 5, 55, 4, 9];
    maxPerimeter(arr3, 10);
     
</script>

Producción:  

Maximum Perimeter is: 20
Triangle formation is not possible.
Maximum Perimeter is: 41

La complejidad temporal de este enfoque es O(n*log(n)). Este tiempo es necesario para ordenar la array.

Complejidad espacial :O(1) ya que se usa espacio constante
 

Publicación traducida automáticamente

Artículo escrito por egoista y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *