Factorial de cada elemento en la serie de Fibonacci

Dado el límite superior, imprima factoriales de todos los Números de Fibonacci más pequeños que el límite.
Ejemplos: 
 

Input : limit = 20
Output : 1 1 1 2 6 120 40320 6227020800
Explanation : 
Fibonacci series in this range is 0, 1, 1, 2, 
3, 5, 8, 13. Factorials of these numbers are 
output.

Input : 50
Output : 1 1 1 2 6 120 40320 6227020800
         51090942171709440000 
         295232799039604140847618609643520000000

Sabemos que los cálculos factoriales simples causan desbordamiento muy pronto. Por lo tanto, usamos factoriales de números grandes
Una solución simple es generar todos los números de Fibonacci uno por uno y calcular el factorial de cada número generado usando el método discutido en factoriales de números grandes.
Una solución eficiente se basa en el hecho de que los números de Fibonacci aumentan en orden. Así que usamos el factorial generado previamente para calcular el siguiente factorial.
 

C++

// CPP program to find factorial of each element
// of Fibonacci series
#include <iostream>
using namespace std;
 
// Maximum number of digits in output
#define MAX 500
 
// Finds and print factorial of n using
// factorial of prev (stored in prevFact[
// 0...size-1]
void factorial(int prevFact[], int &size,
                         int prev, int n);
 
// Prints factorials of all fibonacci
// numbers smaller than given limit.
void printfibFactorials(int limit)
{
   if (limit < 1)
      return;
 
   // Initialize first three Fibonacci
   // numbers and print factorials of
   // first two numbers.
   int a = 1, b = 1, c = 2;
   cout << a << " " << b << " ";
 
   // prevFact[] stores factorial of
   // previous fibonacci number
   int prevFact[MAX];
   prevFact[0] = 1;
 
   // Size is current size of prevFact[]
   int size = 1;
 
   // Standard Fibonacci number loop
   while (c < limit)
   {
       factorial(prevFact, size, b, c);
       a = b;
       b = c;
       c = a + b;
   }
}
 
// Please refer below article for details of
// below two functions.
// https://www.geeksforgeeks.org/factorial-large-number/
 
// Function used to find factorial
int multiply(int x, int prevFact[], int size)
{
    int carry = 0;
    for (int i = 0; i < size; i++) {
        int prod = prevFact[i] * x + carry;
        prevFact[i] = prod % 10;
        carry = prod / 10;
    }
 
    // Put carry in res and increase
    // result size
    while (carry) {
        prevFact[size] = carry % 10;
        carry = carry / 10;
        size++;
    }
    return size;
}
 
// Finds factorial of n using factorial
// "prev" stored in prevFact[]. size is
// size of prevFact[]
void factorial(int prevFact[], int &size,
                         int prev, int n)
{
   for (int x = prev+1; x <= n; x++)
       size = multiply(x, prevFact, size);
 
    for (int i = size - 1; i >= 0; i--)
        cout << prevFact[i];
    cout << " ";
}
 
// Driver function
int main()
{
    int limit = 20;
    printfibFactorials(limit);
    return 0;
}

Java

// Java program to find
// factorial of each element
// of Fibonacci series
import java.io.*;
 
class GFG
{    
    // Maximum number of
    // digits in output
    static int MAX = 500;
    static int size = 1;
     
    // Finds and print factorial
    // of n using factorial of
    // prev (stored in prevFact[
    // 0...size-1]
    // Finds factorial of n
    // using factorial "prev"
    // stored in prevFact[]. size
    // is size of prevFact[]
    static void factorial(int []prevFact,
                          int prev, int n)
    {
    for (int x = prev + 1;
             x <= n; x++)
        size = multiply(x, prevFact, size);
     
        for (int i = size - 1;
                 i >= 0; i--)
            System.out.print(prevFact[i]);
        System.out.print(" ");
    }
     
    // Prints factorials of all
    // fibonacci numbers smaller
    // than given limit.
    static void printfibFactorials(int limit)
    {
        if (limit < 1)
            return;
     
        // Initialize first three
        // Fibonacci numbers and
        // print factorials of
        // first two numbers.
        int a = 1, b = 1, c = 2;
        System.out.print(a + " " +
                         b + " ");
         
        // prevFact[] stores factorial
        // of previous fibonacci number
        int []prevFact = new int[MAX];
        prevFact[0] = 1;
         
        // Standard Fibonacci
        // number loop
        while (c < limit)
        {
            factorial(prevFact, b, c);
            a = b;
            b = c;
            c = a + b;
        }
    }
     
    // Please refer below
    // article for details of
    // below two functions.
    // https://www.geeksforgeeks.org/factorial-large-number/
     
    // Function used to
    // find factorial
    static int multiply(int x,
                        int []prevFact,
                        int size)
    {
        int carry = 0;
        for (int i = 0; i < size; i++)
        {
            int prod = prevFact[i] *
                        x + carry;
            prevFact[i] = prod % 10;
            carry = prod / 10;
        }
     
        // Put carry in
        // res and increase
        // result size
        while (carry != 0)
        {
            prevFact[size] = carry % 10;
            carry = carry / 10;
            size++;
        }
        return size;
    }
     
    // Driver Code
    public static void main(String args[])
    {
        int limit = 20;
        printfibFactorials(limit);
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

Python3

# Python3 program to find
# factorial of each element
# of Fibonacci series
 
# Maximum number of
# digits in output
MAX = 500
size = 1
 
# Finds and print factorial
# of n using factorial of
# prev (stored in prevFact[
# 0...size-1]
# Finds factorial of n
# using factorial "prev"
# stored in prevFact[]. size
# is size of prevFact[]
def factorial(prevFact, prev,n) :
    global size
    for x in range((prev + 1), n + 1) :
        size = multiply(x, prevFact, size)
         
    for i in range((size - 1), -1, -1) :
        print(prevFact[i], end = "")
    print(end = " ")
     
     
# Prints factorials of all
# fibonacci numbers smaller
# than given limit.
def printfibFactorials(limit) :
    if (limit < 1) :
        return
 
    # Initialize first three
    # Fibonacci numbers and
    # print factorials of
    # first two numbers.
    a = 1
    b = 1
    c = 2
    print(a,b , end = " ")
     
    # prevFact[] stores factorial
    # of previous fibonacci number
    prevFact = [0] * MAX
    prevFact[0] = 1
     
    # Standard Fibonacci
    # number loop
    while (c < limit) :
        factorial(prevFact, b, c)
        a = b
        b = c
        c = a + b
     
# Please refer below
# article for details of
# below two functions.
# https://www.geeksforgeeks.org/factorial-large-number/
     
# Function used to
# find factorial
def multiply(x,prevFact,size) :
    carry = 0
    for i in range(0, size) :
        prod = prevFact[i] *x + carry
        prevFact[i] = prod % 10
        carry = prod // 10
     
    # Put carry in
    # res and increase
    # result size
    while (carry != 0) :
        prevFact[size] = carry % 10
        carry = carry // 10
        size = size + 1
     
    return size
 
     
# Driver Code
limit = 20
printfibFactorials(limit)
 
# This code is contributed by Nikita Tiwari.

C#

// C# program to find
// factorial of each element
// of Fibonacci series
using System;
 
class GFG
{    
    // Maximum number of
    // digits in output
    static int MAX = 500;
     
    // Finds and print factorial
    // of n using factorial of
    // prev (stored in prevFact[
    // 0...size-1]
    // Finds factorial of n
    // using factorial "prev"
    // stored in prevFact[]. size
    // is size of prevFact[]
    static void factorial(int []prevFact,
                          ref int size,
                          int prev, int n)
    {
    for (int x = prev + 1; x <= n; x++)
        size = multiply(x, prevFact, size);
     
        for (int i = size - 1; i >= 0; i--)
            Console.Write(prevFact[i]);
        Console.Write(" ");
    }
     
    // Prints factorials of all fibonacci
    // numbers smaller than given limit.
    static void printfibFactorials(int limit)
    {
    if (limit < 1)
        return;
     
    // Initialize first three Fibonacci
    // numbers and print factorials of
    // first two numbers.
    int a = 1, b = 1, c = 2;
    Console.Write(a + " " + b + " ");
     
    // prevFact[] stores factorial of
    // previous fibonacci number
    int []prevFact = new int[MAX];
    prevFact[0] = 1;
     
    // Size is current size
    // of prevFact[]
    int size = 1;
     
    // Standard Fibonacci
    // number loop
    while (c < limit)
    {
        factorial(prevFact, ref size, b, c);
        a = b;
        b = c;
        c = a + b;
    }
    }
     
    // Please refer below
    // article for details of
    // below two functions.
    // https://www.geeksforgeeks.org/factorial-large-number/
     
    // Function used to find factorial
    static int multiply(int x,
                        int []prevFact, int size)
    {
        int carry = 0;
        for (int i = 0; i < size; i++)
        {
            int prod = prevFact[i] *
                          x + carry;
            prevFact[i] = prod % 10;
            carry = prod / 10;
        }
     
        // Put carry in
        // res and increase
        // result size
        while (carry != 0)
        {
            prevFact[size] = carry % 10;
            carry = carry / 10;
            size++;
        }
        return size;
    }
     
    // Driver Code
    static void Main()
    {
        int limit = 20;
        printfibFactorials(limit);
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

PHP

<?php
// PHP program to find
// factorial of each element
// of Fibonacci series
 
// Maximum number of
// digits in output
$MAX = 500;
$size = 1;
$prevFact = $prevFact =
            array_fill(0, $MAX, 0);
 
// Finds and print factorial
// of n using factorial of
// prev (stored in prevFact[
// 0...size-1]
// Finds factorial of n
// using factorial "prev"
// stored in prevFact[]. size
// is size of prevFact[]
function factorial($prev, $n)
    {
    global $size, $prevFact;
    for ($x = $prev + 1;
         $x <= $n; $x++)
        $size = multiply($x, $size);
     
        for ($i = $size - 1;
             $i >= 0; $i--)
            echo $prevFact[$i];
        echo " ";
    }
     
// Prints factorials of all
// fibonacci numbers smaller
// than given limit.
function printfibFactorials($limit)
    {
        global $MAX, $prevFact;
        if ($limit < 1)
            return;
     
        // Initialize first three
        // Fibonacci numbers and
        // print factorials of
        // first two numbers.
        $a = 1;
        $b = 1;
        $c = 2;
        echo $a . " " . $b . " ";
         
        // prevFact[] stores factorial
        // of previous fibonacci number
        $prevFact[0] = 1;
         
        // Standard Fibonacci
        // number loop
        while ($c < $limit)
        {
            factorial($b, $c);
            $a = $b;
            $b = $c;
            $c = $a + $b;
        }
    }
     
// Function used to
// find factorial
function multiply($x,$size)
    {
        global $prevFact;
        $carry = 0;
        for ($i = 0;
             $i < $size; $i++)
        {
            $prod = $prevFact[$i] *
                    $x + $carry;
            $prevFact[$i] = $prod % 10;
            $carry = (int)($prod / 10);
        }
     
        // Put carry in
        // res and increase
        // result size
        while ($carry != 0)
        {
            $prevFact[$size] = $carry % 10;
            $carry = (int)($carry / 10);
            $size++;
        }
        return $size;
    }
     
// Driver Code
$limit = 20;
printfibFactorials($limit);
 
// This code is contributed
// by mits
?>

Javascript

<script>
 
// Javascript program to find
// factorial of each element
// of Fibonacci series
 
    // Maximum number of
    // digits in output
    var MAX = 500;
    var size = 1;
 
    // Finds and print factorial
    // of n using factorial of
    // prev (stored in prevFact[
    // 0...size-1]
    // Finds factorial of n
    // using factorial "prev"
    // stored in prevFact. size
    // is size of prevFact
    function factorial(prevFact , prev , n) {
        for (x = prev + 1; x <= n; x++)
            size = multiply(x, prevFact, size);
 
        for (i = size - 1; i >= 0; i--)
            document.write(prevFact[i]);
        document.write(" ");
    }
 
    // Prints factorials of all
    // fibonacci numbers smaller
    // than given limit.
    function printfibFactorials(limit) {
        if (limit < 1)
            return;
 
        // Initialize first three
        // Fibonacci numbers and
        // print factorials of
        // first two numbers.
        var a = 1, b = 1, c = 2;
        document.write(a + " " + b + " ");
 
        // prevFact stores factorial
        // of previous fibonacci number
        var prevFact = Array(MAX).fill(0);
        prevFact[0] = 1;
 
        // Standard Fibonacci
        // number loop
        while (c < limit) {
            factorial(prevFact, b, c);
            a = b;
            b = c;
            c = a + b;
        }
    }
 
    // Please refer below
    // article for details of
    // below two functions.
    // https://www.geeksforgeeks.org/factorial-large-number/
 
    // Function used to
    // find factorial
    function multiply(x,  prevFact , size) {
        var carry = 0;
        for (i = 0; i < size; i++) {
            var prod = prevFact[i] * x + carry;
            prevFact[i] = prod % 10;
            carry = parseInt(prod / 10);
        }
 
        // Put carry in
        // res and increase
        // result size
        while (carry != 0) {
            prevFact[size] = carry % 10;
            carry = parseInt(carry / 10);
            size++;
        }
        return size;
    }
 
    // Driver Code
     
        var limit = 20;
        printfibFactorials(limit);
 
// This code is contributed by todaysgaurav
 
</script>

Producción :  

1 1 2 6 120 40320 6227020800

Publicación traducida automáticamente

Artículo escrito por rishabh_jain y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *